

17. Workshop
Software-Reengineering

und -Evolution
der GI-Fachgruppe Software-Reengineering (SRE)

Bad Honnef

4.-6. Mai 2015

17. Workshop Software-Reengineering und -Evolution
der GI-Fachgruppe Software Reengineering (SRE)

4.-6. Mai 2015
Physikzentrum Bad Honnef

Die Workshops Software Reengineering
(WSR) im Physikzentrum Bad Honnef wurden mit
dem ersten WSR 1999 von Jürgen Ebert und Franz
Lehner ins Leben gerufen, um neben den
internationalen erfolgreichen Tagungen im Bereich
Reengineering (wie etwa SANER und ICSME)
auch ein deutschsprachiges Diskussionsforum zu
schaffen. Seit dem letzten Jahr haben wir explizit
das Thema Software-Evolution in den Titel mit
aufgenommen, um eine breitere Zielgruppe
anzusprechen und auf den Workshop aufmerksam
zu machen. Damit ist das neue Kürzel entsprechend
WSRE.

Ziel der Treffen ist es nach wie vor, einander
kennen zu lernen und auf diesem Wege eine direkte
Basis der Kooperation zu schaffen, so dass das
Themengebiet eine weitere Konsolidierung und
Weiterentwicklung erfährt.

Durch die aktive und gewachsene Beteiligung
vieler Forscher und Praktiker hat sich der WSRE
als zentrale Reengineering-Konferenz im deutsch-
sprachigen Raum etabliert. Dabei wird er weiterhin
als Low-Cost-Workshop ohne eigenes Budget
durchgeführt. Bitte tragen auch Sie dazu bei, den
WSRE weiterhin erfolgreich zu machen, indem Sie
interessierte Kollegen und Bekannte darauf
hinweisen.

Auf Basis der erfolgreichen WSR-Treffen der
ersten Jahre wurde 2004 die GI-Fachgruppe
Software Reengineering gegründet, die unter
http://www.fg-sre.gi-ev.de/ präsent ist. Durch die
Fachgruppe wurden seitdem neben dem WSRE
auch verwandte Tagungen zu Spezialthemen
organisiert. Seit 2010 ist der Arbeitskreis
„Langlebige Softwaresysteme“ (L2S2) mit seinen
„Design For Future“-Workshops (DFF) aufgrund
der inhaltlichen Nähe ebenfalls bei der Fachgruppe
Reengineering aufgehängt. Alle zwei Jahre findet
seitdem ein gemeinsamer Workshop von WSRE
und DFF statt.

Der WSRE ist weiterhin die zentrale Tagungs-
reihe der Fachgruppe Software-Reengineering. Er
bietet eine Vielzahl aktueller Reengineering-
Themen, die gleichermaßen wissenschaftlichen wie
praktischen Informationsbedarf abdecken. In
diesem Jahr gibt es wieder Vorträge zu einem
weiten Spektrum von Reengineering-Themen.

Wir sind sicher, dass der diesjährige WSRE –
auch dank Ihrer Teilnahme – wieder zu einem
lohnenden Ereignis wird und viele spannende
Diskussionen und neue Kontakte hervorbringen.

Die Organisatoren danken allen Beitragenden
für ihr Engagement – insbesondere den Vor-
tragenden, Autorinnen und Autoren. Unser Dank
gilt auch den Mitarbeiterinnen und Mitarbeitern des
Physikzentrums Bad Honnef, die es sicherlich wie
immer verstehen werden, ein angenehmes und
problemloses Umfeld für den Workshop zu
schaffen.

Volker Riediger, Universität Koblenz-Landau
Jochen Quante, Robert Bosch GmbH, Stuttgart
Jens Borchers, Sopra Steria Consulting, Hamburg
Jan Jelschen, Universität Oldenburg

http://www.fg-sre.gi-ev.de/

17. Workshop Software-Reengineering & Evolution 

4.-6. Mai 2015

Tagungsprogramm

Montag, 4. Mai Slot #

bis 11:00 Anreise

Text Mining

11:00 Welcome 1

11:15 Jochen Quante Software Reengineering Bibliometrics - People, Topics, and Locations 2

11:45 Marcel Heinz and Ralf

Lämmel

Verbesserung einer aus Wikipedia gewonnenen Ontologie
3

12:15 Mittagspause

Analysis

14:00 Arne Wichmann and

Sibylle Schupp
Visual Analysis of Control Coupling for Executables 4

14:30 Martin Wittiger and Timm

Felden
Recognition of Real-World State-Based Synchronization 5

15:00 Torsten Görg Performance Tuning of PDG-based Code Clone Detection 6

15:30 Kaffeepause

Model Based Development

16:00 Klaus Müller and Bernhard

Rumpe

A Methodology for Impact Analysis Based on Model Differencing
7

16:30 Dilshodbek Kuryazov and

Andreas Winter

Towards Model History Analysis Using Modeling Deltas
8

17:00 Domenik Pavletic and

Syed Aoun Raza

Multi-Level Debugging for Extensible Languages
9

17:30 Fachgruppensitzung SRE 10

18:00 Abendessen und traditioneller Spaziergang

Dienstag, 5. Mai

Migration

09:00 Johannes Meier,

Dilshodbek Kuryazov, Jan

Jelschen and Andreas

Winter

A Quality Control Center for Software Migration 11

09:30 Tilmann Stehle and

Matthias Riebisch

Establishing Common Architectures in a Process for Porting Mobile Applications

to new Platforms
12

10:00 Harry Sneed Namensänderung in einem Reverse Engineering Projekt 13

10:30 Werner Teppe
Data reengineering and migration to prepare a legacy application platform

migration
14

11:00 Kaffeepause

Quality

11:15 Nils Göde Quality Control in Action 15

11:45
Jens Borchers

Software-Qualitätsmanagement im Rahmen von Application Management

Services
16

12:15 Martin Brandtner, Philipp

Leitner and Harald Gall
Profile-based View Composition in Development Dashboards 17

12:45 Mittagspause

Tool Demos

14:00 Nils Göde Teamscale 18

14:20 Arne Wichmann Kuestennebel: Visual Analysis of Control Coupling for Executables 19

14:40 Dilshodbek Kuryazov Q-MIG 20

15:00 Social Event: Besuch/Führung im Arp-Museum Rolandseck

abends Conference Diner (ab ca. 18:30)

Mittwoch, 6. Mai

Architecture

09:00 Michael Langhammer and

Klaus Krogmann

A Co-evolution Approach for Source Code and Component-based Architecture

Models
21

09:30 Robert Heinrich, Kiana

Rostami, Johannes

Stammel, Thomas Knapp

and Ralf Reussner

Architecture-based Analysis of Changes in Information System Evolution 22

10:00 Jens Knodel, Matthias

Naab and Balthasar

Weitzel

Modularity – Often Desired, Too Often Failed 23

10:30 Kaffeepause

Project Support

11:00 Jan Jelschen, Johannes

Meier and Andreas Winter
SENSEI Applied: An Auto-Generated Toolchain for Q-MIG 24

11:30 Marvin Grieger and Masud

Fazal-Baqaie

Towards a Framework for the Modular Construction of Situation-Specific

Software Transformation Methods
25

12:00 Hakan Aksu and Ralf

Lämmel
API-related Developer Profiling 26

12:30 abschließendes Mittagessen

Text Mining

Jochen Quante – Software Reengineering Bibliometrics - People, Topics, and Locations

Marcel Heinz und Ralf Lämmel – Verbesserung einer aus Wikipedia gewonnenen Ontologie

Software Reengineering Bibliometrics –

People, Topics, and Locations

Jochen Quante

Robert Bosch GmbH, Corporate Research
Stuttgart, Germany

The statistical analysis of publication data can pro-
vide insightful information about the state and evolu-
tion of a research field. We report about application
of such an analysis on software reengineering publi-
cations. The analysis of authors, titles and abstracts
results in an overview about relevant people, topics,
and locations.

1 Introduction

Researchers often face the challenge of getting an
overview over a research field. A good starting point
is literature research. However, this easily results in
thousands of documents, and it is very hard to get
an overall picture. This is where statistical analyses
can help. By using data mining techniques, this data
can be leveraged to a level where it really gives an
overview of the most relevant persons, topics, and lo-
cations. We applied such an approach to the analysis
of scientific publications on software reengineering. It
is based on an idea by Hassan et al.[1] who did a sim-
ilar analysis ten years ago.

2 Data Collection

We start by identifying the most relevant conferences.
The selection of conferences guarantees a certain de-
gree of quality (peer reviews). It also has the advan-
tage that people meet there, so the probability to find
collaborations between people is higher than in jour-
nals. Next, a bibliographic database is queried for
publications from these conferences. We use Scopus1,
which provides not only authors and title, but also a
lot of additional information: Abstracts, addresses of
authors, citation information, etc. This data is then
exported and analyzed in a proprietary mining tool.

3 Mining Approach

The following information can be mined from this
data:

• Ranked authors lists: Authors with the highest
number of publications, or with the highest num-
ber of direct or indirect collaborations. This re-
quires to match identical authors, which is a chal-
lenge of its own (e. g., typos, variants in writing
the name, multiple people with same name).

1http://www.scopus.com/

Figure 1: Collaborations between authors with at
least 10 publications.

• Collaboration graph: Who has written papers to-
gether?

• Geographical authors map: Where do people
come from? What are the central locations of
research in this field? This information can be
derived by using Scopus’ affiliation information.
Unfortunately, the affiliation is a free text field,
which means that text mining techniques are
needed to derive the location (city and country)
out of this. For example, sometimes only the
name of the institute is given.

• Topic map: What are the main topics of these
publications? Which topics are related? Who is
active in which of these topics? There are several
approaches to do topic mining. We integrated
word group counting and an advanced topic min-
ing approach [2].

• Trend analysis: Which topics are becoming more
frequent, which ones are fading out? When topics
have been identified, the number of papers on
this topic over the years can be analyzed: Is it
increasing or decreasing? However, only really
strong trends can be identified this way. “Weak
signals” cannot be found using such an approach.

4 Results

We took as a basis all publications from CSMR, ICPC,
ICSM and WCRE from 2004 until 2013, plus ICSE

Author Country #Pub. #CoAu.
Hassan Canada 58 61
Antoniol Canada 56 70
De Lucia Italy 46 (45)
Di Penta Italy 45 62
Guéhéneuc Canada 44 62
Koschke Uni Bremen 22 34
Nierstrasz Uni Bern 21 32
Sneed 21 4
Pinzger Uni Klagenfurt 15 28
Knodel IESE Kaiserslt. 15 27

Table 1: Authors with most publications and most
distinct co-authors (overall and German-speaking).

Figure 2: Where most publications came from (year
vs. number of publications).

publications with keyword “maintenance”. This cor-
pus contains 2,547 publications by 3,433 different au-
thors from 63 different countries.

Looking at authors shows that the most active ones
come from Canada. The ones with the highest num-
ber of publications also have the highest number of
co-authors (see Table 1). Table 1 also shows the “Top
5” German-speaking authors. Collaborations can best
be shown in a graph. Figure 1 shows collaborations
between authors who have published more than 10
papers. The strongest collaborations can naturally be
found between Professors and their (former) Ph. D.
students. For other collaborations, it can be noted
that they are more common between people who re-
side close to each other.

Another question is where the center of research in
this area is. Figure 2 shows where most papers came
from during the last 10 years. USA and Canada are
on top, but Germany has also been quite active for
some time. Such a visualization can be useful to see
if other players (e. g., from China) are coming up.

Another aspect of publications concerns content:
You want to know what the main topics of research
are. When looking at word group frequencies in ti-
tles, terms like “reverse engineering”, “source code”
or “software maintenance” are identified. Looking at

City Country #Auth. #Pub.
Montreal Canada 83 201
Delft Netherlands 27 90
Kingston Canada 36 76
Lugano Switzerland 24 61
Salerno Italy 22 58
Bern Switzerland 17 49
Vienna Austria 35 41
Bremen Germany 21 35
Kaiserslautern Germany 24 29
Stuttgart Germany 14 24

Table 2: Where most publications and authors come
from (overall and Germany only).

Figure 3: Topic map for ICPC publications (excerpt).

the whole abstracts results in more specific terms like
“web applications”, “execution traces” or “aspect ori-
ented programming”. A more advanced technique is
topic mining [2]. Applying this technique to all ab-
stracts from ICPC results in topics as shown in Fig-
ure 3. Such a topic map also shows how topics are
related: Each small circle is a publication, and the
topic areas cover all papers that deal with this topic.
This technique can be used to create a “landscape” of
a research topic.

5 Summary

We have shown how bibliometrics and text mining
can give insights into a given research topic. Such
techniques can be helpful for getting a first overview
for further analysis of a research field. It can also be
used to continuously monitor a field in order not to
miss relevant trends and changes.

References

[1] A. E. Hassan and R. C. Holt. The small world of soft-
ware reverse engineering. In Proc. of 11th Working
Conference on Reverse Engineering (WCRE 2004),
pages 278–283, 2004.

[2] S. Osinski and D. Weiss. A concept-driven algorithm
for clustering search results. IEEE Intelligent Systems,
20(3):48–54, 2005.

Verbesserung einer aus Wikipedia gewonnenen Ontologie
(Extended Abstract)

Marcel Heinz Ralf Lämmel
Arbeitsgruppe Softwaresprachen, Universität Koblenz-Landau

Zusammenfassung
Wikipedia bietet die zur Zeit größte online verfügba-
re Enzyklopädie. Verschiedene Arbeiten zielen darauf
ab, das Wissen aus Wikipedia in eine Ontologie zu
fassen. Nachdem eine Ontologie erstellt wurde, kann
ihre Qualität mit verschiedenen Verfahren bewertet
werden. Zur Analyse einer aus Wikipedia gewonnenen
Ontologie schlagen wir verschiedene Bad Smells vor.
Wir schlagen auch verschiedene Transformationen zur
Verbesserung der Qualität vor. Wir wenden unseren
Ansatz in einer Fallstudie an, welche die Domäne der
Computersprachen betrifft. Diese Vorgehensweise ist
inspiriert durch Ansätze des Software Reverse und Re-
engineering und der Evaluation von Ontologien.

1 Einleitung
Ontologien entsprechen analysierbaren Wissensbasen.
Die enthaltenen Informationen werden meist aus ver-
schiedenen Quellen extrahiert. Zur Zeit bietet Wikipe-
dia die größte online verfügbare Enzyklopädie und ist
daher das Ziel verschiedener Ansätze zur Extraktion
von vorhandenen Informationen.

Als Fallstudie dient in dieser Arbeit Wikipedia’s
Kategorie zu Computersprachen, deren Informatio-
nen das Verstehen von Software-Produkten unterstüt-
zen können. Besonders technologische Abhängigkei-
ten, wie die zu Betriebssystemen, sind von Bedeutung.

Unser Ansatz leitet aus einer gegebenen Domäne ei-
ne Ontologie ab, in welcher primär taxonomische Re-
lationen erfasst werden. Danach übertragen wir das
Konzept von Bad Smells aus der Softwaretechnik auf
die Qualitätsanalyse einer aus Wikipedia gewonnenen
Ontologie. Dabei werden strukturelle und semantische
Aspekte berücksichtigt. Die Mechanismen zur Erken-
nung von Bad Smells basieren entweder auf Metriken
oder auf Muster. Unsere Vorschläge wurden durch vor-
angegangene Arbeiten wie die von Fowler et al. [4]
oder Rosenfeld et al. [5] inspiriert. Schließlich identi-
fizieren wir geeignete Transformationen zur Verbesse-
rung der Qualität.

Im einfachsten Fall benutzen wir Refactorings, wel-
che den ‘Informationsgehalt’ einer Ontologie nicht än-
dern. In andern Fällen müssen wir den ‘Informations-
gehalt’ aber ändern, etwa im Sinne von Prunings zum
Entfernen entdeckter, falscher Information. Wir beru-
fen uns hier auch auf Conesa und Olivé, die beschrei-

ben, wie der Informationsgehalt der Cyc Ontologie sy-
stematisch sinnvoll verändert werden kann [2].

Die Leitfrage an dieser Stelle ist daher, ob sich be-
kannte Konzepte aus der Softwaretechnik (Software
Reverse und Re-engineering) und Evaluation von all-
gemeinen Ontologien auf eine speziell aus Wikipedia
extrahierte Ontologie zur Qualitätsverbesserung über-
tragen lassen.

2 Extraktion einer Ontologie
Unser Ansatz konzentriert sich auf die im Folgenden
beschriebenen, strukturierten Informationen von Wi-
kipedia, welche in einer Ontologie erfasst werden.

Das erste Ziel einer Extraktion betrifft den
Kategorien-Graph. Angefangen bei einer Wurzelkate-
gorie, etwa der Kategorie zu Computersprachen, wer-
den alle direkten und transitiven Unterkategorien in
Hat-Unterkategorie-Beziehungen erfasst.

Die Artikel in den Kategorien bilden das zweite Ziel
einer Extraktion. Jeder Artikel beschreibt eine En-
tität. Jede Entität wird der enthaltenden Kategorie
durch eine Hat-Entität-Beziehung zugeordnet. Bei ei-
nem Artikel werden nur der Name des Artikels und In-
formationen aus einer eventuell vorhandenen Infobox
extrahiert. Die Informationen einer Infobox stellen da-
bei prägnante Attribute zu der im Artikel beschriebe-
nen Entität dar. Eine Infobox wird auf ein ‘Attribu-
teSet’ abgebildet, wobei der Name des verwendeten
Infobox Templates festgehalten wird. Die extrahier-
ten Attribute werden dem ‘AttributeSet’ zugeordnet.

Das dritte Ziel besteht aus den Überkategorien
von Artikeln und Kategorien. Während initial nur die
Kategorien erfasst werden, welche von der gewähl-
ten Hauptkategorie erreichbar sind, werden hier auch
die Namen der Kategorien erfasst, welche nicht von
der Hauptkategorie erreichbar sind. Daraus ergeben
sich weitere Hat-Unterkategorie- und Hat-Entität-
Beziehungen.

3 Analyse einer Ontologie
Verschiedene Qualitätsmängel in der extrahierten On-
tologie sind nicht immer eindeutig. Wenn eine Katego-
rie beispielsweise viele Artikel beinhaltet, dann ist dies
kein eindeutiges Zeichen dafür, dass Artikel in Unter-
kategorien verschoben werden müssen. Allerdings ist
eine solche Tatsache ein Anzeichen dafür, dass eine

Verbesserung durchgeführt werden könnte und ent-
spricht damit einem Bad Smell.

Wir haben eine Reihe von Bad Smells identifiziert.
Zu jedem Bad Smell gehört dessen Name, seine Be-
schreibung, sein Erkennungsmechanismus sowie die
Nennung eines positiven und eines negativen Treffers.

Ein beispielhafter Bad Smell ist Bloated Category.
Mit ihm werden Kategorien erfasst, die sehr viele Ar-
tikel beinhalten. Er basiert auf den Bad Smells Large
Class von Fowler et al. und Large Category von Rosen-
feld et al. [5]. Ein positiver Match für diesen Bad Smell
ist die Kategorie zu ‘XML-based standards’, welche
260 Artikel enthält. Die entsprechende Seite auf Wi-
kipedia ist bereits mit einem Hinweis markiert, dass
Artikel in Unterkategorien verschoben werden sollen.
Ein negativer Match ist die Kategorie ‘Free softwa-
re programmed in C’ mit 474 Artikeln. Es ist nicht
offensichtlich, wie diese Kategorie in sinnvolle Unter-
kategorien aufzuteilen wäre.

Die Namen weiterer Bad Smells sind in Tabelle 1
aufgelistet. Die gelisteten Bad Smells mit semanti-
schem Bezug basieren auf den Ideen von Baumeister
et al. [1] und Fahad und Qadir [3], welche sich auf
Anomalien allgemein in Ontologien konzentrieren.

Overcategorization Redundant Relation
Lazy Category Speculative Generality

Cycle Chain of Inheritance
Missing Category Partition Error
Twin Categories Multi Topic

Topic Inconsistency Semantical Distance

Tabelle 1: Liste der vorgeschlagenen Bad Smells

4 Verbesserung einer Ontologie
Bei der Verbesserung der Qualität von Ontologien las-
sen sich verschiedene Begriffe unterscheiden. Refac-
torings entsprechen Transformationen, bei denen die
Semantik der Ontologie erhalten bleibt. Prunings da-
gegen verändern das vorhandene Wissen von Ontolo-
gien. Wir schlagen einen entsprechenden Katalog mit
Name, Beschreibung und Kontext zu jedem Refacto-
ring und Pruning vor.

Ein beispielhaftes Refactoring ist ‘Remove redun-
dant has-entity’. Der Artikel ‘SPARQL’ ist sowohl in
der Kategorie ‘Data modeling languages’ als auch in
der Kategorie ‘Computer languages’ vorhanden. ‘Da-
ta modeling languages’ ist eine direkte Unterkategorie
von ‘Computer languages’. Daher ist die Beziehung
zwischen ‘Computer languages’ und ‘SPARQL’ red-
undant und wird durch dieses Refactoring entfernt.
Dank der Transitivität der Beziehung bleibt das Wis-
sen der Ontologie erhalten.

Ein beispielhaftes Pruning ist ‘Abandon entity’.
Wenn ein Artikel zu wenig Bezug zu seiner Kate-
gorie oder zur Domäne hat, kann die entsprechende
Ressource aus der Ontologie entfernt werden. In der
Kategorie ‘Computer languages’ sind Computerspiele
ebenfalls erreichbar. Der Artikel zu ‘Doom (1993 vi-

deo game)’ wird beispielsweise erfasst. Auf ihn trifft
jedoch der Bad Smell ‘Semantical Distance’ zu. Von
insgesamt 38 Kategorien, die diesen Artikel enthalten,
ist nur eine Kategorie von ‘Computer languages’ aus
erreichbar. Daher kann der Artikel aus der Ontologie
entfernt werden, in dem alle Relationen, die ihn be-
treffen, gelöscht werden.

Die Namen weiterer Refactorings und Prunings
werden in Tabelle 2 aufgeführt.

Abandon Category Rename Element
Abandon Entity Change Topic

Remove Has-SubCategory Add Missing Category
Remove Has-Entity Unite Attributesets
Collapse Hierarchy Extract Entity

Remove unreachable Element Extract SubCategory
Lift Cycle Move Entity

Move Category

Tabelle 2: Refactorings und Prunings

5 Zusammenfassung
Wir wenden bekannte Konzepte aus der Softwaretech-
nik ebenfalls auf Ontologien an. Eine von Wikipedia
gewonnene Ontologie kann auf Bad Smells untersucht
werden. Wann es sich wirklich um einen Mangel han-
delt, muss vom jeweiligen Betrachter entschieden wer-
den. Bereits Fowler et al. erwähnen, dass die mensch-
liche Intuition in diesem Belang wichtig ist.

Zur Reparatur übertragen wir Refactorings aus
der Softwaretechnik und Prunings aus dem Bereich
der Qualitätsverbesserung von allgemeinen Ontologi-
en auf die extrahierte Ontologie. Diese Art von Ver-
fahren kann nicht nur zur Analyse und Verbesserung
einer extrahierten Ontologie verwendet werden, son-
dern mit gewissen Anpassungen auch zur Qualitätssi-
cherung von Domänen in Wikipedia selbst eingesetzt
werden.

Literatur
[1] Joachim Baumeister and Dietmar Seipel. Verification

and refactoring of ontologies with rules. In Managing
Knowledge in a World of Networks, pages 82–95. Sprin-
ger, 2006.

[2] Jordi Conesa and Antoni Olivé. Pruning ontologies in
the development of conceptual schemas of information
systems. In Conceptual Modeling–ER 2004, pages 122–
135. Springer, 2004.

[3] Muhammad Fahad and Muhammad Abdul Qadir. A
framework for ontology evaluation. ICCS Supplement,
354:149–158, 2008.

[4] Martin Fowler, Kent Beck, John Brant, William Op-
dyke, and Don Roberts. Refactoring: improving the
design of existing code. Addison-Wesley, 1999.

[5] Martin Rosenfeld, Alejandro Fernández, and Alicia
Díaz. Semantic wiki refactoring. a strategy to assist
semantic wiki evolution. In Fifth Workshop on Se-
mantic Wikis Linking Data and People 7th Extended
Semantic Web Conference Hersonissos, Crete, Greece,
June 2010, page 132. Citeseer, 2010.

Analysis

Arne Wichmann and Sibylle Schupp –Visual Analysis of Control Coupling for Executables

Martin Wittiger and Timm Felden – Recognition of Real-World State-Based Synchronization

Torsten Görg – Performance Tuning of PDG-based Code Clone Detection

Visual Analysis of Control Coupling for Executables

Arne Wichmann, Sibylle Schupp
Technische Universität Hamburg-Harburg, Hamburg, Germany

{arne.wichmann, schupp}@tuhh.de

Program comprehension of stripped executables is
hard because neither modules and function names, nor
any other structural information are available. We in-
troduce an algorithm that, using morphological opera-
tions, highlights fan-in, fan-out, and module coupling
in the adjacency matrix of the control flow graph and
thus allows initial orientation at function level.

This paper introduces the structures of interest and
our algorithm, and analyzes the yaboot bootloader.

1 Control Coupling Analysis of
Stripped Executables

A general problem of analyzing stripped executables
is that very little information is available. Specifically,
a disassembler can only help to regroup the code to
functions, but on its own cannot generate useful func-
tion names, or recreate modules of the code. A first
orientation in the code needs a method that is in-
dependent of debug information, execution traces, or
known libraries and operating systems.

In this paper we present an algorithm that recon-
structs information about functions of interest, mod-
ules, and their control coupling and thereby gives an
overview of the executable. An exploitable property
for such an algorithm is that linkers keep the func-
tions and object files in the sequence they were given
during compilation and thereby encode such informa-
tion into the program’s addresses and its control flow
graph (compare [2]). Our algorithm mines the control
flow graph for fan-in, fan-out, and reference clusters
between functions using morphological operations on
the graph’s adjacency matrix and presents them in
a comprehensive plot, so that the analyst can get a
rough overview of the executable.

While alternative visual coupling analyses exist,
they are usually applied to structures extracted from
high-level code [1] or use trace information [7].

Table 1: Interpretations of Visual Structures

Structure Interpretation

Diagonal Local Control Flow
Box/Triangle on Diagonal Module
Box/Triangle not on Diag. Module Coupling
Global Vertical Fan-In/Library
Vertical near Diag. Helper Function
Global Horizontal Fan-Out/Dispatch
Horizontal near Diag. Dispatch Function

A B C D E F G H I J K L M N O
1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 1: Control Flow Plot for yaboot/fc15

2 Visual Analysis of yaboot

Figure 1 shows an example of the yaboot bootloader
for PowerPC from the Fedora Core 15 Linux distri-
bution with rough row (A..O) and column (1..14) no-
tations for orientation. Each horizontal row in the
plot represents one of the about 350 functions, each
column tracks control accesses in 128 byte steps. We
describe the structures of interest and their interpre-
tation:
A1..D1 Big green horizontal line: A setup/dispatch
module with large fan-out.
B2..C8 Several red vertical lines: A library module
with high fan-in.
G1..G14 Long red vertical lines: Basic library func-
tions with high fan-in.
J9..N14 Different shapes near diagonal, little cou-
pling in J1..N8 and A9..I14: External library with
good separation.

Manual inspection using information from debug
symbols confirms the interpretation: A1 is a module
that contains an interactive shell, B2 is a wrapper
module to the openfirmware (BIOS like), G1 is the C
library and J9 is the ext2fs library.

3 Control Flow Plots and Visual Struc-
tures

The goal is to create an algorithm that produces a
control flow plot, like the one shown in the example
above. A control flow plot is based on a binary adja-

1

(a) H (red) (b) V (green) (c) B (blue)

Figure 2: Separated Results for yaboot/fc15

cency matrix of control accesses (similar to [6]), where
both axes represent numerically ordered program ad-
dresses. To represent function sizes, outgoing accesses
are grouped per function (horizontal) and incoming
accesses (vertical) use bins in the size of an average
basic block.

In such a plot different key visual structures (see
Table 1) can be mined and highlighted that provide
semantics for an analyst. The diagonal line is caused
by intraprocedural control flow, like jumps and next
instructions, and its steepness represents the functions
sizes. Modules can be identified by their intra-module
coupling, which shows up as boxes or triangles next to
the diagonal line. Coupling between modules shows
up as boxes or triangles disconnected from the diago-
nal. Setup functions with high fan-out will produce a
scattered horizontal line, helper and library functions
with high fan-in will leave a similar but vertical line.

The scope of functions and modules can be esti-
mated by their access lines’ length as well as their
relative closeness to the diagonal. Longer lines corre-
late to broader access across modules and shorter lines
near the diagonal identify intramodular functions.

4 Morphological Highlighting of Struc-
tures

We provide a simple algorithm to highlight the struc-
tures in the image using basic image processing oper-
ations like erosion, dilation, opening (erode + dilate),
and closing (dilate + erode) from mathematical mor-
phology. An erosion operation leaves only pixels in
the image, where a structuring element fully fitted in
the original image. A dilation adds pixels wherever
a structuring element aligned with a pixel from the
original image has a pixel.

A custom script in IDA Pro [3] extracts the control
flow graphs as plots, which are then processed using
the octave image package [5].
Listing 1 shows the code used to highlight the struc-

H = imdilate(imerode(imclose(J,ones(hlen,1)),

ones(hlen/3,1)),ones(1,vlen/10));

V = imdilate(imerode(imclose(J,ones(1,vlen)),

ones(1,vlen/3)),ones(hlen/10,1));

B = H + V + J;

s = ones(blen/3,blen/3);

B = imclose(imdilate(imclose(B,s)-B,s),s);

Listing 1: Line and Block Emphasis Algorithm

tures in the plot. The separated results (see Figures 2a
to 2c) are composed in an additional step to form the
result image (see Figure 1). The line detection in both
horizontal and vertical direction first uses closing on
the image with a long line as structuring element to
create initial lines, then erodes with a shorter element
to keep only long lines. The line is finally broadened
by a dilation with an orthogonal structure.

To create the boxes and triangles in the image, the
original image is combined with the detected lines and
then closed using a block structuring element to form
a blurred version. Single dots and lines are removed
by subtracting the combined image, and the resulting
gaps are removed in one dilation step. The remaining
structures in the image are again closed to produce
the final area information.

5 Summary and Future Work

The algorithm works independently of the architec-
ture and therefore supports all the processor mod-
ules in IDA Pro. The prototype implementation was
run on a testsuite [4] of several embedded executables
as well as executables from the CPU2006 benchmark.
Manual checks of the results are consistent with debug
as well as reverse-engineered information. The next
steps are to integrate the implementation in a reverse
engineering workflow and to expand the evaluation in
both quality and quantity.

References

[1] Johannes Bohnet and Jürgen Döllner. “Visual
Exploration of Function Call Graphs for Feature
Location in Complex Software Systems”. In: Pro-
ceedings of the 2006 ACM Symposium on Soft-
ware Visualization. SoftVis ’06. Brighton, United
Kingdom: ACM, 2006, pp. 95–104.

[2] Peter J. Denning. “The Locality Principle”. In:
Communications of the ACM 48.7 (July 2005),
pp. 19–24.

[3] IDA Pro: Interactive Disassembler. url: http:
//www.hex-rays.com/products/ida/index.

shtml.

[4] Küstennebel. url: http://www.tuhh.de/sts/
research/projects/kuestennebel.html.

[5] Octave-forge: Image. url: http : / / octave .

sourceforge.net/image/.

[6] Reese T. Prosser. “Applications of Boolean Ma-
trices to the Analysis of Flow Diagrams”. In:
Papers Presented at the December 1-3, 1959,
Eastern Joint IRE-AIEE-ACM Computer Con-
ference. IRE-AIEE-ACM ’59 (Eastern). Boston,
Massachusetts: ACM, 1959, pp. 133–138.

[7] Daniel Quist and Lorie M. Liebrock. “Revers-
ing Compiled Executables for Malware Analysis
via Visualization”. In: Information Visualization
10.2 (2011), pp. 117–126.

Recognition of Real-World State-Based Synchronization

Martin Wittiger and Timm Felden
University of Stuttgart, Institute of Software Technology

Abstract
In the real world, safety-critical embedded systems use
state-based synchronization to avoid data races. Using
constraint solving to tackle state, we have improved upon
existing static data race analysis.

1 Introduction
Data races form a class of programming errors. They are
notoriously difficult to find by software testing, yet cause
severe problems. Safety-critical embedded systems rely on
functional correctness that can only be achieved in the ab-
sence of data races. This domain, therefore, particularly
requires tools to mitigate the risks in this area. There-
fore, the development of static analysis tools, which can
either detect data races or prove their absence, is a well-
established research problem.

Whenever multiple tasks of a concurrent system access
shared resources such as communication variables, soft-
ware developers use synchronization patterns. Desktop
software mostly relies on mutexes and monitors. Em-
bedded systems avoid these two patterns. In our experi-
ence, almost all embedded systems employ interrupt en-
able/disable patterns to synchronize tasks. Static analysis
tools handle these patterns easily and efficiently. In ad-
dition, state-based synchronization is prevalent. It is of-
ten hand-crafted to fit a specific system and typically relies
heavily on scheduling properties such as task priorities.

State-based synchronization is generally hard to deal
with using static analysis. Keul [1] performs an analysis
step called simple path exclusion that recognizes state ma-
chines used for synchronization. Schwarz et al. [2] use
the term flag-based synchronization to denote essentially
the same thing. Both approaches only recognize simple
patterns. They both pose strict, virtually syntactically veri-
fiable requirements on variables forming state machines.

2 State Analysis
Our goal is to classify data races using constraint solv-
ing. Consider the following two small examples. Both
examples involve a state variable s that we assume to be
of an atomic type and thus free of data races and a shared
variable d that might be subject to a data race. Greek let-
ters are used to denote tasks.

In the first example, we we show a variation of the
ordinary state-based locking. We want new states to be

This work was in part funded within the project ARAMiS by the Ger-
man Federal Ministry for Education and Research with the funding ID
01IS11035. The responsibility for the content remains with the authors.

0 12

α

β α

β

Figure 1: State transitions in our first state machine.

Task α Task β

if(s == 0) { if(s == 0) {
s = 1; s = 2;
d = 4; d = 7;
s = 0; } s = 0; }

Figure 2: A state machine with two tasks and three states.

added easily, thus we use an untaken state 0 that is not
owned by any thread. For the sake of simplicity, we re-
strict ourselves to two tasks with one access each. The
resulting state machine is depicted in figure 1. A pseudo-C
implementation is shown in figure 2.

The second example (figure 3) features three tasks and
a slightly degenerated state machine.

We will discuss whether the examples contain data
races after taking a closer look at our approach.

2.1 Tool Composition
The analyses described in this paper build upon several
layers of preexisting analyses. Our toolchain processes
safety-critical C-code. In a first step, a pointer analysis, re-
fined by escape analysis, is performed on the AST. We then
perform a lockset analysis and establish a flow-, thread-
and partly context-sensitive call graph using a project-
specific concurrency configuration. An in-depth descrip-
tion is given by Keul [1]. All analyses are designed to
be conservative, i. e. there will be a warning for each data
race. Warnings are pairs of accesses to memory locations.
In practice, many of them are false positives that we want
to be able to safely exclude from the list.

Task α Task β Task γ

if(s == 1) { if(s == 2) { s++;
d *= 17; d += 37;
s = d; } s = d; }

Figure 3: A state machine with three tasks and multiple
states.

Afterwards, we perform dead code elimination and run
a constant folding and propagation analysis. This is very
important since constants used in synchronization mech-
anisms in real code are rarely just integer literals.

In the next stage, state variables have to be selected.
This step is discussed in the next section as it has to be
performed manually at the moment. Now, the call graph
is projected on the effects on the selected state variables.
This means that each statement in every basic block in
every procedure in each thread is replaced by a conservat-
ive approximation of its effect. For instance, if a statement
provably cannot change the value of any state variable, it
is replaced by a nop.

When assigning to a dereference, for instance *p = 7,
one cannot in general know, which memory location is af-
fected. Such an assigment may thus be transformed into
several weak updates on any state variable p may point
to. However, if p points to a specific memory location, a
single (strong) update is produced whenever this is a state
variable or otherwise a nop is emitted. We treat function
pointers in a similar fashion. So, the straightforward usage
of pointer analysis leads to a natural translation that con-
servatively approximates pointers. As a whole this takes a
form of abstract interpretation.

The projection also retains and marks conflicting ac-
cesses from warnings. The projection result including
those data race marks is then transferred to a constraint
language. The solver then discards all warnings whose ac-
cesses can be shown not to be concurrently reachable.

In our implementation we use CSPM (machine-readable
CSP, see [3]) as a constraint language and the FDR2 [4] re-
finement checker. Certain peculiarities of FDR2 require us
to preprocess the CSPM output of our tool before passing it
on. When processing small examples like the ones shown
in this paper, FDR2 answers instantly. Solver runtime pre-
sumably becomes an issue in more complex settings.

2.2 Choice of State Variables
We do not consider all variables eligible to represent state.
To remain conservative, we have identified five criteria:

• Accesses to state variables must be atomic. This
can be achieved in several ways: By declaring them
atomic, by disabling certain compiler optimizations
and using appropriate types, or by suitably enabling
and disabling interrupts. This atomicity implies the
absence of superfluous assignments and data races.

• State variables must be declared volatile. The C
memory models do not provide strong enough guar-
antees about the visibility of updates to non-volatile
variables to base synchronization on.

• Any state variable must be compared to a constant in
a path predicate at least once. If they are not, they
cannot possibly provide a means of synchronization.

• A variable that is never assigned a constant should not
be used as it probably is of no use.

• State variables should be communication variables,
i. e. they should be accesible from more than one task.
Any variable local to a single task is likely to contrib-
ute little or nothing to synchronization.

Our tool rejects proposed state variables if they appear
to be involved in data races and warns the user when non-
volatile variables are used.

2.3 Examples Unveiled
When we use our prototype to examine the example code
from figure 2, it refuses to eliminate the warning on the
variable d seemingly protected by state-based synchron-
ization. This is simply because the synchronization is
broken—indeed, figure 1 is intentionally misleading.

State machines are safe when each state is owned by
at most one task. States that have multiple owners will
typically yield data races, while states with no owner result
in deadlocks, as they cannot be left. Here, s == 0 allows
both tasks to access the shared resource and introducing
priorities would not change anything.

The second example is tricky: It seems that Task γ al-
lows for uncoordinated state changes breaking the state
pattern. If, however, the priority of γ is lower than that of
both α and β , the mechanism works and there is no data
race. If γ has the highest priority, there is a data race on d.
Our tool reports both cases correctly and is not misled by
the curious assignments of d to s nor by the wrap-around
semantics of s.

The real-life embedded C code we have encountered
inspires this example. The ability to recognize this pattern
leads to the elimination of false positives, which in turn
saves QA staff time.

3 Conclusion and Future Work
Judging whether a given implementation of state-based
synchronization works as intended is difficult and error-
prone. We are confident that in future our approach will
scale to industry-sized programs and dispense with manual
identification of variables. Our work provides a means
to verify the correctness of a given implementation. We
improve upon existing solutions by reducing the require-
ments on state variables. We have demonstrated how our
constraint-solving approach works on small programs and
enables programmers to verify that synchronization pat-
terns work as intended.

References
[1] S. Keul, “Tuning Static Data Race Analysis for Automotive Con-

trol Software,” in 11th IEEE International Working Conference on
Source Code Analysis and Manipulation, 2011, pp. 45–54.

[2] M. D. Schwarz, H. Seidl, V. Vojdani, and K. Apinis, “Precise Ana-
lysis of Value-Dependent Synchronization in Priority Scheduled
Programs,” in LNCS, vol. 8318, 2014, pp. 21–38.

[3] C. A. R. Hoare, Communicating Sequential Processes. Prentice
Hall International, 2004.

[4] Formal Systems (Europe) and Oxford University, “Failures-Diver-
gence Refinement: FDR2 User Manual,” 2010.

Performance Tuning of PDG-based Code Clone Detection

Torsten Görg

University of Stuttgart

Universitätsstr. 38, 70569 Stuttgart, Germany
torsten.goerg@informatik.uni-stuttgart.de

Abstract: This paper provides several ideas how to

improve the performance of PDG-based code clone

detection techniques. We suggest an efficient way to

handle the subgraph isomorphism problem without

losing precision and present an algorithm that

avoids the unnecessary matching effort for

subclones of larger clones.

1 Introduction

To reach a high recall in code clone detection,

PDGs (Program Dependency Graphs) can be used

as an intermediate representation of the analyzed

code. Komondoor and Horwitz [1] have introduced

this approach. Clone pairs are calculated by

matching subgraphs along two synchronously

constructed slices. The main advantage of PDG-

based clone detection is that it abstracts from

several structural code differences which are

semantically irrelevant, i.e., from reordering

independent statements. PDG-based clone detection

is able to recognize many more semantically

equivalent clones that are not structurally

equivalent than structural approches like token-

based or AST-based clone detection [2]. To express

program semantics in detail directly in the graph

structure, Krinke [3] has suggested fine-grained

PDGs. The nodes of fine-grained PDGs are at a

granularity level similar to 3-address-code

statements. But a fine granularity results in PDGs

with many nodes so that performance issues

become relevant. Because of the subgraph

isomorphism problem, graph matching is

principally NP-complete. Krinke tackles this

problem with an approximation that groups similar

paths through the graph into equivalence classes.

The tradeoff is a loss of precision.

Our intention is to construct a PDG-based clone

detector that provides high precision along with

acceptable performance. A high detection precision

is important to recognize clones that are sematically

equivalent and not only similar. The contributions

of this paper are to suggest a precise high-

performance approach to handle the subgraph

isomorphism problem specifically in the context of

PDG-based clone detection and to provide an

algorithm that avoids unnecessary matching effort

for clones that are part of another clone.

2 Handling of the Subgraph

Isomorphism Problem

During the PDG matching process two nodes v1 and

v2 are compared based on their node types and node

attribute values. If v1 and v2 are equal, their

outgoing edges are matched. We assume that both

nodes have n outgoing edges. Without further

distinguishing the edges there are n! possibilities to

map the outgoing edges of v1 to the outgoing edges

of v2. Each step to an adjacent node provides a

similar multitude of possibilities. To check all these

possibilities requires a backtracking algorithm with

exponential complexity. But NP-completeness does

not necessarily make an algorithm unusable, if the

problem size is small.

Fig. 1. Data dependency categories of assignments

In a PDG the edges represent dependencies of

different types. The main categories are data

dependencies and control dependencies. And there

are many subcategories of data dependencies for

different purposes specifically for different node

types. It does not make sense to mix up these

categories. E.g., an assignment is data dependent on

the expression for the new value on the right-hand

side and on a l-valued expression on the left-hand

side that determines where the new value is stored.

These two dependencies have completely different

purposes. Fig. 1 shows the situation as a composite

pattern in a UML class diagram. Further examples

are the operands of non-commutative operators and

the data dependencies of Φ-nodes. If the outgoing

edges of each node are grouped into sections for the

different categories, the matching process can

handle each section separately and has to take into

account only the inner permutations of the sections.

Let k be the number of sections and ni the number

of outgoing edges in section i: n1!+n2!+...+nk! < n!,

Σni=n, ni>0. Based on this observation the size of

the PDG matching problem can be reduced

significantly. Our approach is a generalization of

the equivalence classes suggested by Krinke [3].

A special case is program code that does not use

commutative operators and does not dereference

pointers. In this case, ni=1 for all sections and just

one unique mapping is possible. We use a PDG

variation that combines the PDG approach with

SSA form by integrating Φ-nodes into the PDG. In

conventional PDGs, ni>1 at all join points, even

without commutative operators and dereferenced

pointers. The operands of commutative operators,

like add or multiply operators, have the same

purpose and are therefore grouped into the same

section. Dereferencing pointers may cause ni values

greater than 1 as pointers usually have multiple

target objects. Each object in the target set

establishes a data dependency. To keep the ni

values small, it is important to use a precise pointer

analysis as a basis of the clone detection.

The handling of sections with multpile entries can

be further improved by introducing a partial order

on expressions [4]. E.g., for two binary add

operations x and y their summands are sorted

according to the partial order on expressions:

(x1, x2), x1 ≤ x2 and (y1, y2), y1 ≤ y2. If the

summands can be ordered in such a way, no

permutation is needed and x1 is uniquely mapped to

y1 and x2 to y2.

If the performance is still not sufficient, the entries

of a section can be merged and not distinguished

any more in the further process, at the cost of

reduced precision, as suggested in Krinke’s

approach [3]. But this is not necessary in general. A

performance improvement is already gained by

grouping dependencies into sections, without any

loss of precision.

3 Avoiding Subclones

Another important issue is the selection of suitable

start nodes for the subgraph matching. A naive

approach would start a comparison at each node

with every other node. A consequence of this

quadratic scheme is that comparisons are started at

nodes which are inside of larger clones. We call the

resulting clones subclones of the encompassing

clones. But usually one is interested in the maximal

clones only. Several clone detection techniques

filter subclones in a postprocessing step, e.g., the

AST-based technique of Baxter [2]. In contrast, our

approach avoids a repeated matching of many

subclones in advance.

At first, we start with any node r1 ∈ V that

represents an output value at the exit of a

procedure. The backward slice S1 spanned by this

node is matched against the backward slices S2,i

spanned by all nodes r2, i of the same node type that

have not been processed yet. Then we mark r1 as

processed. The result of a succesful match between

S1 and S2,i is a clone C = (C1, C2,i) with C1 ⊆ S1,
C2,i ⊆ S2,i and a relation M ⊂ V x V that describes
which node matches which other node. A
matching starting with any v1 ∈ C1, v1≠r1 and
v2,i ∈ C2,i, v2,i≠r2,i with M(v1, v2,i) provides a
subclone of C. The unnecessary matching
process starting at the root nodes v1 and v2,i is
skipped. Instead, the next match attempt starts
with each q1 ∈ S1, q1 ∉ C1, where q1 is a direct
successor of a node in C1. q1 is processed in the
same way as described above. After all nodes
reachable from r1 are processed, the algorithm
continues with the next procedure-output-value
node. The set of output values encompasses
return values, output parameters, and writing
side effects. Nodes that are not processed, in the
end, indicate dead code.
Although the worst case complexity is still

quadratic, we expect the average performance of

this algorithm to be much below that.

4 Conclusion

Although algorithms with exponential complexity

are often viewed as unusable, in the context of PDG

matching several performance improvements are

possible. As PDGs provide a chance to push clone

detections further towards the detection of semantic

clones, it should be examined in more detail. A

prototypical implementation of the ideas presented

in this paper is currently under construction.

References

[1] Raghavan Komondoor and Susan Horwitz, “Using

Slicing to Identify Duplication in Source Code,” in

Proc. of the 8th International Symposium on Static

Analysis (SAS ’01), London, UK, Springer-Verlag,

2001

[2] Chanchal Kumar Roy and James R. Cordy, “A

survey on software clone detection research,”

technical report, Queen’s University, Canada, 2007.

[3] Jens Krinke, “Identifying Similar Code with

Program Dependence Graphs,” in Proc. Eight

Working Conference on Reverse Engineering

(WCRE 2001), Stuttgart, Germany, pp. 301-309,

October 2001

[4] Torsten Görg and Mandy Northover, “A canonical

form of Arithmetic and Conditional Expressions,” in

Proc. of the 16th Workshop Software Reengineering

& Evolution (WSRE 2014), Bad Honnef, Germany,

2014

Model Based Development

Klaus Müller and Bernhard Rumpe – A Methodology for Impact Analysis Based on Model
Differencing

Dilshodbek Kuryazov and Andreas Winter – Towards Model History Analysis Using
Modeling Deltas

Domenik Pavletic and Syed Aoun Raza – Multi-Level Debugging for Extensible Languages

A Methodology for Impact Analysis Based on Model Differencing

Klaus Müller, Bernhard Rumpe
Software Engineering

RWTH Aachen University
mueller@se-rwth.de, rumpe@se-rwth.de

1 Introduction

A software system typically has to be changed fre-
quently to adapt the system to new or changing re-
quirements or due to bug fixes. One crucial problem is
that every kind of change can introduce severe errors
into the software system and that it is difficult to pre-
dict in what way which parts of a software system are
potentially affected by a change. Impact analysis ap-
proaches cope with this problem by trying to identify
the potential consequences of changes [1].

In model-based software development, models are
usually transformed into concrete implementations
[2]. Even though code generators can automatically
generate essential parts of a software system, it is
usually still required to create and maintain further
handwritten artifacts such as source code. These arti-
facts have to be integrated into the generated parts of
the software system and, thus, they sometimes heav-
ily depend on the generated artifacts. For example,
a code generator might generate the database schema
based on a UML class diagram. If developers intro-
duce a handwritten source code file which contains
SQL queries that access this database, the source code
file depends on the generated database schema and
consequently also on the UML class diagram. Hence,
model changes can have tremendous impact on the
handwritten artifacts.

In this extended abstract, we discuss a methodol-
ogy for developing and applying a model-based im-
pact analysis approach, in which explicit impact rules
can be specified in a domain specific language (DSL).
These impact rules embody what kind of model
changes have what kind of impact. Based on such im-
pact rule specifications, impact rule implementations
are generated, which check the specified conditions
and output the defined impact.

The main advantage of defining explicit impact
rules is that they allow formalizing knowledge about
known dependencies and characteristics of a software
system. As the impact rules describe the impact of
model changes, it is possible to create a checklist that
informs developers about the impacts of all model
changes that have been detected in a model differ-
encing step. The resulting checklist, thus, contains
concrete hints about the development steps that are
(potentially) necessary to adapt the system to the

model changes. Due to this, the checklists can sim-
plify the evolution process, as developers can work
through the checklists. The motivation for creating
such checklists is that developers might forget to per-
form certain development steps that are necessary af-
ter specific model changes. This particularly holds in
a complex software system.

In the next section, we elaborate on the methodol-
ogy for developing and appyling the approach. Results
of a case study dealing with the impacts of UML class
diagram changes can be found in [3].

2 Methodology to Generate Checklists

Our methodology proposes an impact analysis ap-
proach that is composed of two steps: the identifica-
tion of model differences and the application of impact
rules on these differences. As a result, the approach
produces a checklist which can be ticked off.

Subsequently, Subsection 2.1 outlines the steps that
have to be performed to set up this impact analysis ap-
proach. After that, Subsection 2.2 outlines the steps
that have to be carried out to apply the approach.

2.1 Setting up the Impact Analysis Ap-
proach

At first, a model differencing tool has to be chosen to
be able to perform model differencing. If the chosen
model differencing tool expects input models of a cer-
tain type, but the original input models have another
type, a model converter has to be implemented or an
existing one has to be integrated into the tool chain
to allow for differencing the input models.

One problem that has to be considered in the con-
text of model differencing is that a completely auto-
matic approach to model differencing cannot infer the
differences correctly in all cases [4]. Because of this,
we propose to allow users to integrate knowledge of
how specific model elements changed in so-called user
presettings. Hence, user presettings have to be de-
rived that fit to the corresponding input model type.
Furthermore, the model differencing tool needs to be
extended to be able to process user presettings [4].

These two steps are the only required steps to be
able to calculate the model differences. Next, the
steps that are necessary to set up the impact anal-
ysis part of the approach are sketched.

The impact analysis approach that results from
applying the proposed methodology relies on impact
rules capturing the consequences of changes in partic-
ular types of models. In an impact rule the user is free
to define what kind of change leads to what kind of
impact. To improve the comprehensibility of an im-
pact rule, the methodology proposes a simple DSL, in
which it can be specified which conditions have to be
fulfilled by a model difference so that a certain check-
list hint is created.

1 impactRule "IRExample" {

2 description = "Example description"

3 severity = critical

4 relevantFor = "mueller@se -rwth.de"

5

6 impact {

7 renamedClass () =>

8 "Implement data migration."

9 }

10 }

Figure 1: Simple impact rule example

A very simple example of an impact rule written
in the DSL is illustrated in Figure 1. At first, a de-
scription indicating what the impact rule is used for
(line 2) is denoted, then it is defined how critical vi-
olations against the impact rule are (line 3) and for
which persons the hints are relevant for (line 4).

In the subsequent part, it is defined which condi-
tions have to be fulfilled by a model difference to re-
sult in the creation of the subsequently given checklist
hint (line 7 − 8). According to Listing 1, a checklist
would inform the developer about the necessity to im-
plement a data migration if a class was renamed. An
impact rule can contain zero or multiple blocks of such
condition parts and according checklist hints. More-
over, the condition part can consist of multiple condi-
tions that can be combined using the logical operators
&& and || known from Java. For each type of model
change which can be found in the model differencing
step and which is relevant for the impact analysis, we
propose to derive a condition which checks whether
the particular type of model change occurred. For
instance for UML class diagrams, there would be con-
ditions such as renamedClass (see line 7 of Listing 1)
or addedAssociation [3]. These different conditions
need to be implemented in the checklist tool so that
the conditions can be referenced in the condition part
of the impact rule DSL.

As soon as a first set of conditions has been imple-
mented, concrete impact rules can be defined using
the impact rule DSL. An impact rule generator will
generate implementations of the impact rules out of
the impact rule specifications written in the DSL. In
some situations it can be necessary to extend this gen-
erated implementation and to add handwritten parts
to a handwritten subclass [3].

2.2 Applying the Impact Analysis Ap-
proach

After having executed the steps listed in the previ-
ous subsection, the tool chain contains the required
parts to identify the impacts of model changes. The
workflow to apply this impact analysis approach to
generate checklists is outlined in the following.

If not all impact rules should be executed when cre-
ating the checklist, the checklist tool first needs to be
configured by defining which impact rules should (not)
be invoked in the checklist generation. By default, all
impact rules are taken into account.

Afterwards, the developers have to decide for which
pairs of input models the checklists should be gener-
ated. If a model converter had been integrated into
the tool chain, the next step is the invocation of the
model converter to produce models that can be pro-
cessed by the model differencing tool. Finally, the
model differencing tool is invoked for the potentially
converted pairs of input models.

Next, the checklist generator is called for the re-
sulting difference model. Every difference contained
in the difference model is passed to the impact rules.
Each impact rule then analyzes the current model dif-
ference and creates a list of hints at further (potential)
development steps, if the difference is regarded as rel-
evant. These different hints are finally merged into a
checklist, together with further information such as a
list of detected model differences.

Before performing the development steps that are
contained in the resulting checklist, developers need
to verify that the reported model differences are cor-
rect. If wrong model differences have been reported,
developers have to provide user presettings to fix these
problems. In this case, the model differencing tool has
to be invoked again and the subsequent steps have to
be repeated.

Remarks This extended abstract discusses a gener-
alization of previous work [3].

References

[1] S. A. Bohner. A graph traceability approach for soft-
ware change impact analysis. PhD thesis, George Ma-
son University, Fairfax, VA, USA, 1995.

[2] R. France, B. Rumpe. Model-Driven Development of
Complex Software: A Research Roadmap. In Proc.
Future of Software Engineering (FUSE’07). Pp. 37–
54. 2007.

[3] K. Müller and B. Rumpe, “A Model-Based Approach
to Impact Analysis Using Model Differencing,” in
Proc. International Workshop on Software Quality
and Maintainability (SQM’14), ECEASST Journal,
vol. 65, 2014.

[4] K. Müller and B. Rumpe, “User-Driven Adaptation
of Model Differencing Results,” International Work-
shop on Comparison and Versioning of Software Mod-
els (CVSM’14), GI Softwaretechnik-Trends, vol. 34,
no. 2, pp. 25–29, May 2014.

Towards Model History Analysis Using Modeling Deltas

Dilshodbek Kuryazov and Andreas Winter

Carl von Ossietzky Universität, Oldenburg, Germany

{kuryazov,winter}@se.uni-oldenburg.de

1 Motivation

The evolving complex software models are designed
and maintained by a team of designers using collabo-

rative modeling tools with a support of version con-

trol. Collaborative modeling tools provide a team-
work of several designers on a shared modeling arti-
fact, whereas model version control is used to store,
manage and handle the histories of that model. Dur-
ing the evolution and maintenance process of models,
model designers feel a need for history analysis feature
for tracing and comprehending the change history of a
complete model or its particular artifacts.

In order to analyze the histories or trace a partic-
ular element of an evolving model, designers need to
determine answers to several questions such as (1) How
often does an element change? (2) When is an element
created? (3) When is an element deleted? (4) Which
elements are constantly changing? (5) How does the
history of an element look like? (6) How was the state
of a whole model in earlier versions? (7) What are the
differences between any two versions of a model? etc.
These analysis questionnaires are also partly defined in
[3]. For answering these questions, the change histories
of modeling artifacts have to be identified and stored
in appropriate ways for further analysis and manipu-
lation. To this end, this paper presents early status
of history visualization to model history analysis using
modeling deltas.

The differences between subsequent model versions
are represented in difference documents, also referred
to as Modeling Deltas [2]. Modeling Deltas are ex-
ecutable sequence of modification operations which
transform a model from one state to another. Modeling
deltas represent information about the whole history of
a model. Thus, modeling deltas are essential for build-
ing and developing various services and components for
version control, history analysis and collaborative ap-
plications on top of them. It is quite essential to reuse
and exploit the model differences in further analysis
and manipulations i.e. only difference representation
is useless if difference information is not reusable.

The general Delta Operations Language (DOL),
meta-model generic and operation-based approach is
introduced in [2] to model difference representations.
Conceptually, DOL is a set of domain-specific lan-
guages for model difference representation in terms of
operations. A specific DOL for a specific modeling lan-
guage is derived from the meta-model of a modeling
language. A specific DOL is fully capable of repre-
senting model differences conforming the given meta-

model in terms of DOL operations. Only changed ele-
ments between model versions are identified and repre-
sented in Modeling Deltas. Each modeling delta con-
sists of the semantic differences between subsequent
model versions. DOL-based modeling delta represen-
tation is applied to model history analysis in this paper.

The remainder of the paper is structured as follows:
Section 2 gives a motivating example of DOL-based
difference representation. Model history analysis using
modeling deltas is discussed in Section 3. Section 4
draws some conclusions.

2 Modeling Delta Representation

In order to present the idea behind the DOL-based
approach to model history analysis, this section ex-
plains a simplified example of model difference repre-
sentation in terms of DOL operations.

Figure 1 depicts three subsequent versions of the
same UML activity diagram. The example model illus-
trates the case of ordering system. Each concept of the
model is assigned to a persistent identifier. The first
model version has one Receive action. In the second
version, a new action Fill Order and control flow g7

are created, the name of the existing action is changed
to Receive Order, and the target of the control flow g4

is also changed to the new action. Then, the target of
control flow g5 is reconnected back to the final node
and the created action g6 and the control flow g7 are
deleted in the third version.

Each of the modeling concepts can be created,
changed or deleted during the evolution process. Thus,
the DOL-based approach considers only these three
basic operations for representing all kind of model
changes ([2], [1]).

The differences between subsequent versions of that
model are represented in terms of delta operations. In
order to be independent from the underlying imple-
mentation technique, the most recent version (version
3) of the model is also represented by DOL operations.
Eventually, there are two modeling deltas for represent-
ing the difference between three subsequent versions

Version 1 Version 2 Version 3

Receive

g1

Receive Order

Fill Order

g2

Receive Orderg3

g4

g5

g1

g2

g3

g4

g6

g7

g5

g1

g2

g3

g4

g5

Figure 1: UML activity diagram in three versions

and one so-called active modeling delta for represent-
ing the recent model version. The active delta only
consists of creation operations (Figure 2) which results
in most recent version of the model.

1 g1=createInitialNode ();
2 g3=createOpaqueAction (" Receive Order");
3 g5=createActivityFinalNode ();
4 g2=createControlFlow(g1,g3);
5 g4=createControlFlow(g3,g5);

Figure 2: Active delta

The differences delta between the third
and the second versions consists of three
DOL operations for creating one action
(g6=createOpaqueAction("Fill Order");), one
control flow (g7=createControlFlow(g6,g5);) and
changing the target of g4 (g4.changeTarget(g6);).
In the same vein, the difference delta be-
tween the second and the first versions con-
tains three operations changing the target of g4

(g4.changeTarget(g3);), deleting g6 (g6.delete();)
and deleting g7 (g7.delete();).

The approach represents differences in directed
modeling deltas (backward delta) which are precisely
executable descriptions of differences i.e. deltas are ap-
plicable to models and applying results in other version
(older version in this example) of the model.

3 Model History Analysis

Analyzing model histories is the best aid in com-
prehending and understanding what changes are made
by designers or to know how a model evolves. Also,
observing the model history and its evolution process
assists the users in making important decisions in fur-
ther steps.

The entire set of modeling deltas in a repository
represents the complete history of the model. The
DOL approach also provides several DOL-services for
reusing and manipulating the DOL-based modeling
deltas [2]. One of these services is the change tracer

which allows to trace the change history of a spe-
cific modeling artifact and gather required information
about it. The model history analysis is built on top of
the change tracer DOL-service.

The change tracer receives a list of modeling deltas
and looks through a chain of modeling deltas. It seeks
change information of a requested model element based
on its persistent identifier by concatenating the given
set of modeling deltas. The outcome of the change
tracer service is a report about change history in an ap-
propriate form. For example, the change tracer service
is employed for the example in Section 2. It receives
three modeling deltas (one active and two differences
deltas) as input and it is requested to return history
reports for the control flow g4. The resulting list of
changes is depicted in Figure 3.

1 g4=createControlFlow(g3,g7);
2 g4.changeTarget(g6);
3 g4.changeTarget(g5);

Figure 3: History information of Control Flow g4.

Finally, the detected change history information can
be used in further analysis by different visualizations.
This approach uses a tabular view to visualize change

information, but difference information can be visual-
ized in any other forms, like model, tree, graph or even
textual. Importantly, most of the questions stated in
Section 1 can be answered in the current status of the
visualization.

Figure 4: History Analysis User Interface

The screen shot in Figure 4 displays the example
model in Section 2. The user interface shows the model
tree on the left, including all versions with their ele-
ments. One model version can be selected, and a whole
version can be seen by clicking Show Selected Version

button or any two versions can be compared in the tab-
ular view on the right side highlighting different kinds
of changes with different colors. To see the history
information of any model element, it can be selected
from the model tree. The change history information
is listed on the table on bottom.

4 Conclusion

This paper has addressed model history analysis us-
ing the DOL-based modeling deltas to model differ-
ence representations. The DOL representation is an
appropriate approach for difference representation as,
it makes the data representation efficient and allows
suitable data structure for data processing. Model-
ing deltas embody all necessary information about the
complete change history of a model. These information
can easily be extracted and reused by the DOL-services
in further analysis.

Implementation of the analysis tool is planned to be
finalized in near future and the whole set of analysis
questions will be covered by this tool.

References

[1] Dilshodbek Kuryazov. Delta operations language
for model difference representation. In Plödereder
et. al., editor, 44. Jahrestagung der Gesellschaft für

Informatik, volume 232, Stuttgart, 2014. GI.

[2] Dilshodbek Kuryazov and Andreas Winter. Rep-
resenting model differences by delta operations. In
Reichert et al., editor, 18th International Enter-

prise Distributed Object Oriented Computing Con-

ference, Worshops and Demonstrations (EDOCW),
pages 211–220, Ulm, 2014. IEEE.

[3] Sven Wenzel. How to trace model elements? In 9.

Workshop Software-Reengineering (WSR’07), Bad
Honnef, May 2007.

Multi-Level Debugging for Extensible Languages

Domenik Pavletic1 and Syed Aoun Raza2

1itemis AG, pavletic@itemis.de
2itemis AG, raza@itemis.de

Abstract

Multi-level debugging of extensible languages requires
lifting program state to the extension level while
translating stepping commands to the base-level. Im-
plementing such bi-directional mappings is feasible for
languages with a low abstraction level (e. g., C). How-
ever, language workbenches support language stack-
ing with a bottom-up approach from low- to high-level
(e. g., domain-specific) languages. This way, genera-
tion of code written with these high-level languages is
incremental. However, languages can have more than
one generator, which is selected depending on the ex-
ecution environment. On the other hand, provision
of such flexibility makes multi-level debugging much
harder. In this paper, we present an approach on how
to enable debugging for such multi-staged generation
environments. The approach is illustrated by mbeddr,
which is an extensible C language.

1 Introduction

In domain-specific and model-driven software devel-
opment several different abstractions come into play,
where each involved entity might not want to deviate
from their abstraction level. Mixed-language environ-
ments or environments with language extensibility ful-
fill this requirement i.e., each entity can use notations
from its respective abstraction level and is therefore
not forced to implement everything with a low-level
language.

We discussed the significance of extensible debug-
gers for extensible languages in [1] with an implemen-
tation based on mbeddr 1. Further, we described the
requirements and the architecture of the debugger: it
is designed for extensibility and supports debugging of
mixed-language programs. However, in mbeddr users
can build multiple levels of language extensions. As
shown in Figure 1, programs written with these exten-
sions are incrementally generated to some base lan-
guage (e. g., C).

Currently, the mbeddr debugger supports single-
level debugging of programs written with language
extensions. Furthermore, debugger extensions are al-
ways implemented relative to the extension- and base-
level. However, if at any level a generator for language

1mbeddr is an extensible language [2], build with the Meta
Programming System (MPS).

extension is changed, then the corresponding debug-
ger extension must be changed as well. Changes to
generators happen on a frequent basis due to bug fixes
or implementation of additional requirements.

Figure 1: Incremental generation from extension- to
base-level

This paper contributes an approach on how to en-
able multi-level debugging and reducing the effort
to support generator changes. We illustrate the ap-
proach with examples based on mbeddr.

2 Requirements

The flexibility to switch between generators is an im-
portant feature of language workbenches which allow
language extension. Accordingly, they must also sup-
port debuggers to provide debugging functionality for
such language extensions. This introduces further re-
quirements in addition to those defined in [1]. After
analysing the application scenario, we have come to
the following further requirements:

GR1 Multi-Level Debugging: Because of the se-
mantical gap, some errors cannot be analyzed
on the extension-level. Debugging the generated
code is possible, however, this involves more ef-
fort because of the missing semantical richness.
Hence, debugging support on different extension-
levels is essential.

GR2 Seamless Integration Support: Languages
can have different generators. The debug-
ger must provide capabilities for integrating
corresponding debugger extensions.

GR3 Scalability: An arbitrary number of genera-
tors can be involved during code generation. This
can slow down debugging experience, however,
there should not be a restriction on how many
code generators can be involved.

3 Implementation Proposal

To support multi-level debugging of extensible lan-
guages, we propose an incremental approach based on
the work described in [1]. In this approach, we pro-
pose lifting program state bottom-up, whereas step-
ping commands are translated top-down. Figure 2
illustrates the approach: the white box represents
our initial mixed-languages program, which is step-
wise translated by different generators to intermediate
programs (grey boxes) until it finally results in a pure
base language program (black box). This represen-
tation is in contrast to our initial approach [1], which
required significant re-implementation in debugger ex-
tensions if any of the generators is replaced. Because
debugger extensions are always implemented in corre-
spondence to the extension- and base-level.

Figure 2: Bi-directional flow of debugging and gener-
ation information

Each generation step will have a corresponding de-
bugger extension, which provides program state and
propagates stepping commands with necessary in-
formation to lower debugger extensions. This way,
the approach facilitates multi-level debugging (GR1).
The framework will provide APIs for easily plugging
in new debugger extensions (GR2). In order to con-
struct program state or translate stepping commands,
the approach will have to traverse all related debug-
ger extensions. This way, number of extensions will
only be limited by the number of generators involved
during transformation (GR3).

4 Discussion

In below listings we show a multi-level transforma-
tion of a language extension that sums up a range of
numbers. This extension is stepwise translated to C.
Listing 1 contains the code of the high-level language
extension for summarizing numbers from 0 to 10.

1 void main() {
2 int sum = 0;
3 sum = [0 to 10];
4 }

Listing 1: First Level

Listing 2 shows the generated code after the first
transformation to a loop language extension.

1 void main() {
2 int sum = 0;
3 loop [0 to 10] { sum += it; }
4 }

Listing 2: Second Level

The listing 3 shows the complete unrolled form of
loop after the final transformation step as a pure C
program (the base language).

1 void main() {
2 int sum = 0;
3 sum += 0;
4 ...
5 sum +=10;
6 }

Listing 3: Base Level

For supporting multi-level debugging for the above
described scenario a debugger extension is required for
each language. In this example, if a user wants to step
over the sum statement in listing 1, it involves the
following steps: first, sum statement debugger exten-
sion sets a breakpoint on the loop in listing 2. Next,
loop debugger extension sets a breakpoint on the sec-
ond statement of listing 3. Finally, this information is
propagated to the base-level debugger (here, gdb).

The previously described scenario clearly defines
that it is possible to debug on different levels in a
multi-level transformation. Further, this is accom-
plished by mapping debug information stepwise. The
combination of such debugger extensions will provide
multi-level debugging from highest to the base lan-
guage (GR1). Additionally, it is possible to scale this
approach by combining an arbitrary amount of trans-
formation levels (GR3).

Generating a different structure requires introduc-
ing a new generator, but also a new debugger exten-
sion for this generator (GR2). Nevertheless, changes
to existing generators only require re-implementation
in the respective debugger extension.

5 Conclusion

This paper discusses the requirements and an imple-
mentation strategy for supporting multi-level debug-
ging for extensible languages in mbeddr. Depending
on the language workbench there can be additional re-
quirements. However, we have discussed the general
requirements which are necessary to implement basic
functionality of multi-level debugging.

6 Future Directions

In the future we will investigate how debugger ex-
tensions can be implemented inside generators. Also
we will analyze how much information (e. g., variable
names) can be reused this way. Finally, we will in-
vestigate to which extent debugger extensions can be
derived from transformation rules.

References

[1] D. Pavletic, S. A. Raza, M. Voelter, B. Kolb, and
T. Kehrer. Extensible debuggers for extensible lan-
guages. Softwaretechnik-Trends, 33(2), 2013.

[2] M. Voelter. Language and IDE Development, Mod-
ularization and Composition with MPS. In GTTSE
2011, LNCS. Springer, 2011.

Migration

Johannes Meier, Dilshodbek Kuryazov, Jan Jelschen and Andreas Winter – A Quality Control
Center for Software Migration

Tilmann Stehle and Matthias Riebisch – Establishing Common Architectures in a Process for
Porting Mobile Applications to new Platforms

Harry Sneed – Namensänderungen in einem Reverse Engineering Projekt

Werner Teppe – Data reengineering and migration to prepare a legacy application platform
migration

A Quality Control Center for Software Migration

Johannes Meier, Dilshodbek Kuryazov, Jan Jelschen, Andreas Winter
Carl von Ossietzky Universität, Oldenburg, Germany

{meier,kuryazov,jelschen,winter}@se.uni-oldenburg.de

Abstract

Software Migration, as transformation of legacy
software into new software implemented in a different
programming language, is motivated by selected qual-
ity goals like higher maintainability of the migrated
software. To check which quality goals were reached,
the inner quality of legacy and migrated software has
to be determined and compared.

To investigate the inner quality of migrated soft-
ware, this paper introduces a Software Migration Qual-
ity Control Center (QCC), which allows comparing the
quality of legacy and migrated software systems. To
this end, this paper discusses requirements for a QCC
and their implementation in the Q-MIG project.

1 Motivation

Software migration is a means to translate exist-
ing legacy systems into another programming language
without changing the functionality [1]. The motiva-
tion for such migrations is a system in a new program-
ming language reaching quality goals like allowing bet-
ter maintenance and improving functionality without
redeveloping the complete software.

In order to achieve successful migrations by antici-
pating the impact of migration on the software quality,
the quality of legacy and new software systems have to
be observed and compared, so that the expected inner
quality in terms of evolvability can be estimated.

Q-MIG1 (Quality-driven software MIGration) aims
at creating strategies and tools to investigate qual-
ity issues of software migrations from COBOL to
Java [2]. To investigate the inner quality systemati-
cally, a toolchain for COBOL to Java migration [3] is
combined with a Quality Control Center (QCC) with
the following use cases:

1. Compare quality of legacy and migrated software.
This use case compares the internal quality of both
legacy and migrated software and helps customer
consultants to check the final quality of the mi-
grated software.

2. Compare quality of migrated software using differ-
ent migration tools. This use case compares the
quality of systems migrated using different tools
with the goal of determining the quality of those
tools. This helps researchers to rate and improve
existing migration tools.

1Q-MIG is a joint venture of pro et con Innovative Infor-
matikanwendungen GmbH, Chemnitz and Carl von Ossietzky
University’s Software Engineering Group. It is funded by Cen-
tral Innovation Program SME of the German Federal Ministry
of Economics and Technology – BMWi (KF3182501KM3).

3. Predict quality of migrated software before execut-
ing the migration. This use case helps customer
consultants to discuss the final quality of the mi-
grated software before migration execution by only
analyzing the legacy software. Doing this for dif-
ferent migration tools, allows selecting of the mi-
gration tool which produces the best quality.

The paper is structured as follows: Section 2
sketches the approach and identifies requirements for
the QCC in Section 3. Applications are demonstrated
in Section 4. Section 5 draws conclusions.

2 Requirements

To identify and define the inner quality of the migra-
tion results, the quality characteristics maintainability
and transferability are selected from the ISO quality
standard [4]. Several metrics relevant to the selected
characteristics are chosen to directly, objectively and
automatically measure the software quality [2]. The
basic idea behind predicting the software quality is to
estimate and use quality models, using automatically
calculated metrics as independent values, and expert
rated characteristics as dependent values. The mea-
sured metric values are used to predict the new values
of the characteristics. The new quality characteristic
values of the software can be used to satisfy the goals
and use cases of Q-MIG in the QCC, for which some
requirements are identified:

• Quality Measurement (RQ1). Metrics have to be
calculated on COBOL and Java, and software ex-
perts have to rate characteristics for COBOL and
Java systems.

• Data Management (RQ2). The QCC has to sup-
port data management tasks like importing data
into the QCC, and creating detailed traceability
links between legacy and migrated software.

• Quality Analysis (RQ3). The QCC enable quality
comparisons of legacy COBOL and migrated Java
systems for Use Cases 1 and 2.

• Quality Prediction (RQ4). The QCC has to
support training quality models and predicting
new characteristic values for new target systems
reusing these models (Use Case 3).

3 Quality Control Center

In the upper part, Figure 1 depicts the used migra-
tion toolchain. CobolFE produces COBOL abstract
syntax trees (ASTs) at measurement point M2, the
COBOL Transformator transforms COBOL ASTs to
Java ASTs (M3), and JGen produces Java source code
at M4. The lower part displays the main components

{meier,kuryazov,jelschen,winter}@se.uni-oldenburg.de

Software Migration Toolchain

Quality Control Center

Q-MIG

Quality Assurance Tools

COBOL
Metric

Calculator

Java
Metric

Calculator

Rating
Tool

Visualizer

Prediction
Tool

Data
ImproverImp

Quality Assurance Tools

ing Dat

Prediction
Quality
Charac-
teristics

y Control Center

Visuali-
zations

Quality
Reports
Qua
Rep

Vis
zat

Java
Metric

Calculator

Cal
Metrics

Quality
Charac-
teristics

y
rac-
ics

Metrics

M4

atorator

M4M3

CalculCalcul

M3

COBOL
Transformator

COBOL
Source
Code

ration Toolchain

Java
Source
Code

JGen SouM4
OL
rce M1 M2

OL

M3

M1 M1

COBCOB

RatingRating

M4

inging

M2

CobolFE

F����� �� COBOL-Java-migration toolchain with tools of the QCC

of the QCC, which fulfills the requirements presented
in Section 2. The COBOL Metric Calculator and the
Java Metric Calculator calculate a given set of met-
rics on COBOL (M1,M2) and Java (M3,M4) source
code and AST, respectively. Internally, the Java Met-
ricCalculator uses GReQL graph queries [5] for metric
implementation. The Rating Tool is created to support
quality experts rating characteristics for COBOL and
Java structures like classes and methods extracted by
the metric calculators (RQ1).

The component Data Improver fulfills the data man-
agement tasks such as creating traceability links be-
tween the legacy COBOL and migrated Java software
for later comparisons, and stores all data about the
software systems and their characteristics and metric
values in a central repository using TGraphs (RQ2).

The Visualizer creates different types of visualiza-
tions, such as HTML reports and line, bar, and scatter
charts allowing to compare and analyze the quality of
software systems before and after migration, as well as
different migration tools (RQ3).

The Prediction Tool provides different machine
learning algorithms including artificial neural networks

and multiple linear regression for training and predict-
ing the quality characteristics. It allows the estimation
of prediction models by training samples of metrics and
expert-rated characteristics. Later on, these prediction
models are used to predict quality characteristics for
future migrations. Quality models can be trained once
and used multiple times (RQ4).

4 Application

The QCC is realized in Q-MIG and applied to three
real-world examples of the project partner. After hav-
ing measurement results of the metrics for COBOL
(COBOL Metric Calculator) and Java (Java Metric

Calculator) systems, and ratings of the software quality
(Rating Tool), the Visualizer creates HTML reports,
enabling both researchers and customer consultants to
compare the quality of legacy and new software (Use
Case 1). Additionally, further graphics like line and
bar charts visualize detailed quality aspects.

The HTML reports display views for comparing dif-
ferent migration tools by showing Java systems mi-
grated from the same COBOL system using different
migration tools (Use Case 2). Some more visualizations
are currently under development.

In order to predict the quality of prospective Java
software which will be the result of future migrations,
the Prediction Tool operates on existing quality data
from previous executed migrations (Use Case 3). These
prediction results help customer consultants to asses
the viability of migrating the legacy COBOL software.

The QCC serves as a knowledge base to improve
the quality of predictions, and will be enriched by the
statistical data about further migrations which helps
both researchers and customer consultants for effective
quality prognosis.

5 Conclusion

This paper discussed a Quality Control Center
(QCC) with several use cases for software migration
quality analysis and prognosis. The QCC is realized
in Q-MIG and applied to real-world applications. The
QCC is valuable for researchers and customer consul-
tants for analyzing and comparing quality of migrated
software systems and making future decisions based
on that knowledge. In the long term, the QCC gath-
ers statistical data about the quality of different mi-
grated software systems and makes prognoses on how
the quality changes in prospective migrations.

References

[1] H. M. Sneed, E. Wolf, and H. Heilmann, Soft-

waremigration in der Praxis: Übertragung alter

Softwaresysteme in eine moderne Umgebung. Hei-
delberg: Dpunkt.Verlag GmbH, 2010.

[2] G. Pandey, J. Jelschen, D. Kuryazov, and A. Win-
ter, “Quality Measurement Scenarios in Software
Migration,” in Softwaretechnik Trends, vol. 34,
no. 2. Gesellschaft für Informatik, 2014, pp. 54–55.

[3] U. Erdmenger and D. Uhlig, “Ein Translator für die
COBOL-Java-Migration,” Softwaretechnik-Trends,
vol. 31, no. 2, 2011.

[4] ISO/IEC, “ISO/IEC 25010 - Systems and software
engineering - Systems and software Quality Re-
quirements and Evaluation (SQuaRE) - System and
software quality models,” Tech. Rep., 2010.

[5] J. Ebert and D. Bildhauer, “Reverse engineering
using graph queries,” in Graph Transformations

and Model-Driven Engineering, ser. Lecture Notes
in Computer Science. Springer, 2010.

E����������� 	
��
� ����������� �
 �
���� �
���� ���������
��

to new Platforms

Tilmann Stehle, Matthias Riebisch

{stehle, riebisch}@informatik.uni-hamburg.de

University of Hamburg, Department of Informatics

1 Introduction

Currently the market of mobile operating systems is di-

vided between several platforms and developers have to

target more than one in order to achieve a large num-

ber of users [4]. Reimplementing an existing application

for a second platform is no trivial task, though. Devel-

opers need to learn the second platform’s API, concepts

and paradigms such as an app’s life cycle, the platform’s

caching mechanisms and the like. On the one hand, differ-

ent technologies and frameworks ease cross-platform de-

velopment, such as Xamarin [8], PhoneGap and many oth-

ers [5]. On the other hand, reimplementing an existing app

with such a framework and discarding the original one is

likely to break the maturity level and the users’ acceptance

in consequence. Additionally there are reasons not to use

tools and languages other than those supported by the op-

erating system producers: The native API is maintained

continuously and the IDEs are strictly aligned to the latest

technology.

This paper introduces a porting approach that aims at eas-

ing the maintenance of the original and the emerging im-

plementation for the target operating system. Furthermore

it contributes to the preservation of the flexibility of native

development and the maturity level of the existing original

app. This is achieved by restructuring the first app in order

to subject most of the code to a semi-automated porting.

It establishes a common architecture of the original and

the ported implementation. This way it reduces the main-

tenance effort compared to a complete reimplementation.

The following sections introduce this process and shortly

specify related work. Finally, the currently conducted eval-

uation and future work is sketched.

2 The Mobile Porting Process

The goal of the process proposed in this section is to es-

tablish a common code base or at least a common structure

for as much platform independent code as possible. This

way, developers can conduct future maintenance tasks in a

structurally equivalent way for both implementations and

an experience portability [7] is established.

In the first step, both platforms are analyzed with regard

to the API they provide for OS functionality. Consider-

ing Android as the original platform, the classes Activity

as well as AsyncTask are exemplary parts of this platform

API. They are used and subclassed to provide user interac-

tion and multithreading.

Secondly, the original app’s architecture is analyzed in or-

der to find dependencies such as usage and inheritance re-

lationships to the platform API as well as to external li-

braries, that are not available for the target platform. Fur-

thermore, one has to assess, which functionality is in-

tended to behave differently on the target platform. An

example of such inherently platform specific functionality

regularly is the user interface, since users of different plat-

forms are used to different interaction and design concepts.

The necessity of the identified platform dependencies is as-

sessed and the effort for removing or isolating them from

platform independent functionality is estimated in the third

step.

During the fourth step, avoidable or even inappropriate

platform dependencies are removed from the original im-

plementation, for example by replacing a superfluous ex-

ternal library from the class path or by using a local vari-

able instead of the platform’s configuration mechanism.

In the subsequent separation step, one extracts as much

platform independent code from code with platform de-

pendencies into new, portable artifacts. This is done by

building a common interface for the operating system

functionality, which is implemented by platform specific

code for both platforms. The platform independent code-

parts have to be moved to new platform independent arti-

facts, which only have dependencies to the newly created

interface. The interface can be implemented by adapters

that either use or inherit from the specific platform classes.

Depending on the considered structure one can argue, if in-

heritance or delegation is the right choice ([3], p.20; [6]).

As a result of this separation, more platform independent

functionality is freed from platform dependencies. At the

same time, platform dependent code artifacts are isolated

as recommended by [7]. It is important, that existing tests

and documentation artifacts are adapted during the con-

ducted changes in order to protect the existing functional-

ity. A tool support for the refactorings can help to avoid

the introduction of bugs in this phase.

After this separation, the platform independent code is

transformed to the target language in the sixth step. In or-

der to save effort for reimplementation and maintenance,

it is highly desirable to use automatic code transforma-

tion tools, if available. These can also be used to trans-

late future code changes that are conducted during main-

tenance. The least tool support that should be used is to

e������ ���������� ���e�� ��� �� ����� �!�"���� #��� � e
original code and to create class skeletons in the target lan-

guage automatically.

After the (semi-)automatic translation, the isolated plat-

form specific code is reimplemented for the target plat-

form. The new implementation provides the common in-

terfaces developed in the separation phase.

In order to use platform specific functionality in platform

independent code (e.g. to use multithreading in business

logic), instances of platform independent classes must get

access to platform dependent ones. Corresponding instan-

tiation statements can be added to the transformed inde-

pendent code, or dependency injection mechanisms are in-

troduced to both implementations in order to extract the

wiring of both code categories to a single platform depen-

dent component. As a third option, platform dependent

classes can instantiate and pass platform specific objects

to platform independent ones, that they create. In conse-

quence of this wiring step, the target platform implemen-

tation becomes runnable. A comparison of those wiring

concepts is subject to future works.

As a final step, traceability links between the original code

artifacts, corresponding diagram elements and their target

platform pendants are established to represent dependen-

cies in an explicit way, as an important part of design in-

formation. These links may as well be creates automati-

cally during code translation.

The process can be applied incrementally to single features

of the application, thereby augmenting the target imple-

mentation run by run. This way, general problems con-

cerning the later process steps (e.g. inappropriate trans-

lations) will become visible, the second platform version

becomes testable and the customer is able to see results

much earlier.

3 Related Work

In [1], common abstract architectures among several plat-

form implementations are discussed the separation of the

user interface and data manipulation components from

others is suggested. The authors do not address porting

though.

[9] describes a process for porting desktop applications to

an iOS-Device. In contrast to the process described here, it

states the necessity of using a common programming lan-

guage and consequently does not cover the benefits of a

common structure of two implementations. Furthermore it

does not discuss an incremental application of the process.

4 Evaluation and future work

Currently, the process is applied to test projects in order

to find proper decoupling mechanisms that separate plat-

form dependent from platform independent code. Addi-

tionally, a case study is undertaken, which applies it to

a real world Android application that is being ported to

iOS. In this contexts, an MVVM-like pattern (cf. [2],

similar to MVC) has been applied by extracting presenta-

tion logic from Activity classes into ViewModel classes and

business logic further down into model classes. The iOS-

version reimplements the user interface, which is wired to

the ported ViewModel. The asynchronous initialization of

ViewModels has been subject to the separation of techni-

cal OS-functionality (multithreading) from business logic

(model initialization) in this context.

Further research has to develop decoupling mechanisms

for other commonly used framework functionality and to

suggest corresponding refactorings leading to a common

structure. These have to be analyzed with regard to the ef-

fects they have on possible future maintenance strategies.

Additionally there is a need for refactoring tools that ease

the establishment of that structure. Prototypes of those

tools will be developed to show the applicability of the

process in a larger scale. A categorization of dependen-

cies with regard to the effort that is needed to remove or

isolate them, is desirable as well.

References

[1] ALATALO, P., JRVENOJA, J., KARVONEN, J., KERO-

NEN, A., AND KUVAJA1, P. Mobile application

architectures. In Product Focused Software Pro-

cess Improvement, M. Oivo and S. Komi-Sirvi, Eds.,

vol. 2559 of Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2002, pp. 572–586.

[2] FURROW, A. Introduction to mvvm.

http://www.objc.io/issue-13/mvvm.html, 6 2014.

[3] GAMMA, E., HELM, R., AND JOHNSON, R. E. De-

sign Patterns. Elements of Reusable Object-Oriented

Software., 1st ed., reprint. ed. Addison-Wesley Long-

man, Amsterdam, 1995.

[4] GARTNER. Gartner says worldwide traditional pc,

tablet, ultramobile and mobile phone shipments on

pace to grow 7.6 percent in 2014, 01 2014.

[5] HEITKÖTTER, H., HANSCHKE, S., AND MA-

JCHRZAK, T. Evaluating cross-platform development

approaches for mobile applications. In Web Informa-

tion Systems and Technologies, J. Cordeiro and K.-H.

Krempels, Eds., vol. 140 of Lecture Notes in Business

Information Processing. Springer Berlin Heidelberg,

2013, pp. 120–138.

[6] KEGEL, H., AND STEIMANN, F. Systematically

refactoring inheritance to delegation in java. In Pro-

ceedings of the 30th International Conference on Soft-

ware Engineering (New York, NY, USA, 2008), ICSE

’08, ACM, pp. 431–440.

[7] MOONEY, J. Strategies for supporting application

portability. Computer 23, 11 (Nov 1990), 59–70.

[8] PETZOLD, C. Creating Mobile Apps with Xamarin.

Forms. Microsoft Press, 2014.

[9] SCHMITZ, M. Strategie für die Portierung von

Desktop-Business-Anwendungen auf iOS-gestützte

Endgeräte. BestMasters. Springer Fachmedien

Wiesbaden, 2014.

Namensänderung in einem
Reverse Engineering Projekt

Harry M. Sneed

SoRing Kft. H-1221 Budapest
Harry.Sneed@T-Online.de

Abstrakt: In diesem Beitrag wird das Problem der
verstümmelten Daten- und Prozedurnamen im alten
Code für Reengineering Projekte angesprochen. In den
meisten Legacy-Systemen sind diese Namen
mnemotechnische Abkürzungen die keiner mehr
versteht. Dies verhindert, dass Diagramme und andere
Dokumente, die aus dem Code gewonnen werden,
verständlich sind. Sollte der Code transformiert werden,
z.B. von COBOL in Java, bleibt auch der Java Code
unleserlich und wird von zuständigen Entwicklern
abgelehnt. Um erfolgreiche Reverse- oder Re-
Engineering Projekte durchzuführen muss etwas mit den
Namen im Code geschehen. Hier wird eine Lösung
beschrieben, die für ein Mainframe-Migrationsprojekt in
einer Landeverwaltung angewandt wurde. Mit Hilfe
dieser Lösung konnten verständliche Dokumente aus
altem VisualAge Code gewonnen werden, die als Basis
für eine Re-Implementierung dienen.

Schlüsselwörter: Migration, Reverse Engineering,
Reengineering, Datennamen, VisualAge, Java,
Wiederverwendung, Umbenennung.

1 Hintergrund der Reverse Engineering

Eine Landesverwaltung in Österreich hat ein altes
Personalabrechnungssystem aus den 90er Jahren, das
sie erneuern möchte. Das System um das es sich handelt
läuft auf einem Mainframe-Rechner und ist teils in
VisualAge und teils in PL/I implementiert. Die Frontend
Online-Programme sind in VisualAge, die Backend
Batch-Programme sind in PL/I. Der VisualAge Teil soll
als erster mit Java re-implementiert werden. Die
Benutzeroberflächen werden neu gestaltet. Um den
neuen Java Code zu schreiben müssen die Entwickler
wissen was in dem alten Code steckt. Vor allem die
Entscheidungslogik, bzw die Geschäftsregel, soll
verstanden werden. Deshalb wurde entschieden eine
Redokumentation der alten VisualAge Prozeduren
durchzuführen.

Das Ziel der Reverse Engineering war es, drei Sichten
auf jede Prozedur sowie einen Prozedurbaum für jedes
Programm zu erstellen. Die drei Sichten sind:

• Ein Struktogramm
• Eine Datenverwendungstabelle und
• Einen Aufrufbaum

Diese drei Sichten sollten dazu dienen die
Prozedurlogik verständlicher zu machen. Der
Prozedurbaum sollte einen Überblick über die
Zusammenhänge aller Prozeduren in einem Programm

vermitteln. Es sind insgesamt mehr als 7000 Prozeduren
in 196 Programmen mit 577296 Anweisungen .

Die einzelnen Prozeduren sind in der CSP Sprache von
IBM geschrieben, ein Kreuz zwischen PL/I und
COBOL. Der Code ist an sich gut strukturiert, die
Daten- und Prozedurnamen aber verschlüsselt. Das
macht den Code schwer zu lesen. (siehe Beispiel 1)

MOVE ' ' TO TXA05U.TXTEOD;
MOVE 1 TO QX05W01.QX05SCZ;
WHILE QX05W01.QX05SCZ <= 20;
 IF QX05W12.PNRINT[QX05SCZ] ^= ' ';

Die ersten Diagramme, die aus dem Code mit einem
Dokumentationswerkzeug namens SoftRedoc generiert
wurden, erwiesen sich als wenig brauchbar für
jemanden, der mit den verschlüsselten Namen nicht
vertraut ist. Demzufolge wurde entschieden die Namen
in dem ursprünglichen Code zu verändern, ehe mit der
Nachdokumentation weiter gemacht wird.

2 Die Gewinnung der Prozedur- und
Datennamen aus den Kommentaren

In VisualAge ist der Code in verschiedenen Source-
Typen aufgeteilt:

• Datendefinitionen
• Satzdefinitionen
• Maskendefinitionen
• Tabellendefinitionen und
• Prozeduren.

Zu jedem Datenelement, jedem Datensatz, jeder Maske,
jeder Tabelle und jeder Prozedur gibt es ein eigenes
Source Member. Dort befindet sich in der Regel, aber
nicht überall, neben dem CSP-Namen des Elementes
auch ein Kommentar - desc, das beschreibt was der
Name bedeutet. (siehe Beispiel 2)

:item name = TXTEOD
 date = '09/28/2004' time = '23:36:16' type = CHA
 bytes = 00001 decimals = 00 evensql = N
 desc = 'Kennzeichen End of Data'

Ein Tool wurde entwickelt um die Source-Code Dateien
durch zu scannen und die Namen zusammen mit den
Kommentaren herauszuschneiden. Es wurde
unterschieden zwischen drei Namensarten:

• Datenelementnamen
• Datensatznamen und
• Prozedurnamen

Für jede Namensart wurde eine Excel Tabelle erzeugt
mit dem originalen Kurznamen, das Kommentar und der
neue Java Name. Der neue Name ist eine
Konkatenierung des Kurznamen und das modifizierte
Kommentar. In dem Kommentar sind ungültige
Sonderzeichen und Leerstellen mit Unterstichen ersetzt.
Der ursprüngliche Kurzname wird als Präfix beibehalten
um die Verbindung zum alten Namen zu behalten und
die Eindeutigkeit zu gewährleisten, denn viele der
Kommentare sind dupliziert. Die Excel Tabellen werden
anschließend in eine relationale Datenbank geladen, wo
sie abgefragt und mit einander verknüpft werden
können. (siehe Beispiel 3)

CHA ;1;0;1;QPENDVRP ;lfd_Nr_Dienstv_Pensionist
CHA ;2;0;1;URLAT2 ;Arbeitstage_2
CHA ;1;0;1;TXTEOD ;Kennzeichen_End_of_Data
CHA ;1;0;1;QLSMKZ ;KZ_ob_Zeile_gefuellt_ist
CHA ;13;0;1;QLGHZULMIN1 ;minZULErh1
CHA ;1;0;1;QUEVTR1 ;Trennungszeichen
Insgesamt wurden 16,384 elementare Datennamen,
1,590 Satznamen und 7,459 Prozedurnamen in die
Namensdatenbank gespeichert.

3 Die Veränderung der Namen im Code

Nachdem die Namenstabellen aufgebaut sind, wird in
einem zweiten Durchlauf durch den Code die
Kurznamen in den Anweisungen durch die Langnamen
ersetzt. Wenn ein Kurzname vorkommt wird er in der
entsprechenden Tabelle gesucht und durch den langen
Namen ersetzt. Bei Datendeklarationen ist dies eine
einfache Überschreibung aber bei den Prozeduren
werden die Textzeilen verlängert. Dort wo die maximale
Zeilenlänge überschritten wird muss die Zeile zerlegt
und eine neue Zeile eingeschoben werden. So wächst
die Größe der Source-Members im Verhältnis zur
Anzahl neuer Zeilen.

Wichtig dabei ist die Konsistenz der Namen. Die
aufgerufenen Prozeduren müssen überall gleich heißen,
ebenfalls die referenzierten Daten. Da der veränderte
Code nur zu Dokumentationszwecken verwendet wird,
ist es nicht so schlimm wenn Fehler im Codetext
vorkommen, dennoch wurde versucht den Code so
genau wie möglich zu reproduzieren. Schließlich soll
der veränderte Code benutzt werden, die Dokumente zu
generieren. (siehe Beispiel 4)

MOVE ' ' TO TXA05U. TXTEOD_Kennzeichen_End;
MOVE 1 TO QX05W01_LWS. QX05SCZ_Zaehler
_Anzahl_Kinder;
WHILE QX05W01_LWS.QX05SCZ_Zaehler_
Anzahl_Kinder <= 20;
 IF QX05W12.PNRINT_lfd_Nr_Person[QX05SCZ
_Zaehler_Anzahl_Kinder] ^= ' ';

4 Generierung der Programmdokumente

Die Erstellung der Programmdokumente und der
Programmbeziehungstabelle wurde mit dem veränderten

Code durchgeführt. Aus jeder der 7000 CSP-Prozeduren
wurde ein Struktogramm, der Entscheidungslogik, ein
HIPO Diagramm der Ein- und Ausgabendaten sowie ein
Protokoll aller Unterprogrammaufrufe abgeleitet und als
PDF-File gespeichert. Danach wurden die Programme
analysiert und für jedes Programm, bzw.
Anwendungsfall, einen Baum der dazugehörigen
Prozeduren erstellt. Dieser Prozedurbaum erfüllt für
prozedurale Programme den gleichen Zweck wie das
Sequenzdiagramm für objekt-orientierte Programme.
Aus den Datensatz-Zuweisungen wird ein Datenbaum
produziert mit den Sätzen, Tabellen und Feldern als
Knoten. Dieser Datenbaum erfüllt den gleichen Zweck
wie ein Klassendiagramm. Schließlich wird aus den
Maskendefinitionen, bzw. ein statischer
Oberflächenprototyp im HTML Format erzeugt, damit
der Java Entwickler sehen kann, wie die Oberfläche
aussieht ohne das System auf dem Mainframe
dynamisch ausführe*n zu müssen.

Zum Schluss werden alle Einzeldokumente in einem
einzigen großen PDF Dokument zusammengefasst, in
dem alles von der Oberfläche bis zu den if-
Anweisungen erfasst ist. Der Entwickler muss nur einen
Prozedurknoten anklicken und er bekommt den
dahinterliegenden Code in Struktogramm-Format zu
sehen. Über das Baumdiagramm kann der Java
Entwickler durch das alte System navigieren, zumindest
was innerhalb eines Anwendungsfalles passiert.

5 Grenzen der Nachdokumentation

Der Ansatz zur Nachdokumentation eines bestehenden
Softwaresystems, der hier in einem Verwaltungsprojekt
verfolgt wurde ist ein Bottom-Up Ansatz. Man beginnt
mit der Analyse einzelner Codebausteine und fügt die
Information die man gewonnen hat zusammen. Mit
dieser Vorgehensweise kommt man nur bis zur Ebene
der einzelnen Dialog-, bzw. Batchprogramme. Der
Überbau, bzw. der Geschäftsprozess und die
übergeordnete Architektur bleiben außer Sichtweite. Es
ist nicht möglich zu erkennen, in welcher Reihenfolge
und unter welchen Bedingungen die einzelnen
Anwendungsfälle ausgeführt werden. Diese Information
kann aus dem Code nicht gewonnen werden.

Die Qualität der Nachdokumentation kann nur so gut
sein wie die Qualität des Codes selbst und diese hängt
im Wesentlichen von der Benennung ab. Ohne
sprechende Namen haben die Programmdokumente,
egal in welcher Form immer, nur einen begrenzten
Wert. In dem hier beschriebenen Projekt konnten neue
Namen aus den Kommentaren gewonnen werden um
die alten Namen zu ersetzen. Dies hat viel zur
Lesbarkeit der Dokumente beigetragen. In künftigen
Projekten dieser Art wird diese Benennungstechnik
weiter verfeinert, aber man stoßt hier sehr bald auf die
Grenzen der Automation. Darüber hinaus müssen die
Menschen eingreifen.

Literaturhinweise:

Data Reengineering, Evolution and Migration to
Prepare a Legacy Application Platform Migration

Werner Teppe
Amadeus Germany GmbH

Email: wteppe@de.amadeus.com

Abstract: Langlebige Softwaresysteme erfahren
während ihrer Lebenszeit vielfältige Änderungen
und Anpassungen. So werden Fehler behoben und
kleinere Anpassungen durchgeführt (Maintenance).
Massive Erweiterungen auf Grund von
Kundenanforderungen können an die Grenzen der
anfänglichen gewählten Architektur gehen. Das
gleiche kann bei Anwendungsrückbauten auftreten,
Außerdem kann sich das Applikationsumfeld
ändern: neue Technologien kommen auf bei
Hardware, Software, Middleware usw. In jedem der
letztgenannten Fälle gilt es zu entscheiden, ob man
zu einer “Standardsoftware” wechseln soll, die
Anwendung neu entwickeln oder migrieren soll.
Wenn der Funktionsumfang der Anwendung
nahezu unverändert bleiben kann, bietet die
Migration Vorteile (Kosten, Risikominimierung
u.a. [2, [3]).

Auf früheren Workshops wurde über ARNO - ein
großes industrielles Migrationsprojekt – berichtet.
In diesem Projekt haben wir erfolgreich eine
Onlinetransaktions-Applikation von BS2000 nach
Solaris migriert. Die aus mehr als 6 Millionen Lines
of Code bestehende Applikation wurde von SPL
(ein PL1 Subset) nach C++, die mehr als 5000 Jobs
von SDF nach Perl und das hoch performante
Filehandling-System von rund 800 Dateien nach
Oracle migriert.

Um die Komplexität der Migration zu beherrschen,
entschieden wir damals, die Datenmigration einfach
zu halten. Daher wurden aus Datensätzen im
BS2000 nun einfache Relationen in Oracle. Sie
bestehen nur aus einem Index und aus einem
langen Feld (BLOB - Binary Large Object).
So konnten wir erreichen, dass die in der
Anwendung enthaltene Navigation auf den Daten
nur wenig geändert werden musste.

Um die Weiterentwicklung der Anwendungen zu
erleichtern, wird nun die Datenhaltung auf ein
„echt“ relationales System umgestellt. Über die
Herausforderungen, die angestrebten Lösungen und
das Vorgehen, die in diesem konkreten Praxisfall
anstehen, wurde auf der WSRE 2014 berichtet. In
der Zwischenzeit wurde das Projekt, das erneut
einen Wechsel auf eine modernere

Hardwarearchitektur und einen Betriebssystemwechsel
vorbereiten und durchführen soll, fortgeführt. Neben
der „rein technischen“ Migration gilt es, die
betroffenen Mitarbeiter einzubinden (Migration of the
people).

In dem Vortrag auf dem WSRE 2015 werden die
angewendeten Methoden, die verwendeten Werkzeuge
und die erreichten Zwischenziele vorgestellt sowie ein
Ausblick auf die nächsten Projektschritte gegeben.

Literatur

 [1] Werner Teppe: Redesign der START Amadeus
Anwendungssoftware. Softwaretechnik-Trends 23(2)
(2003)

[2] Werner Teppe: The ARNO Project: Challenges and
Experiences in a Large-Scale Industrial Software
Migration Project; Proceedings European Conference
on Software Maintenance and Reengineering (CSMR),
pp. 149-158, 2009

[3] Werner Teppe: Teststrategien in komplexen
Migrationsprojekten. Softwaretechnik-Trends 29
(2009)

[4] Werner Teppe: Wiedergewinnung von
Informationen über Legacy-Systeme in
Reengineeringprojekten. Softwaretechnik-Trends 30
(2010)

[5] Werner Teppe: Ein Framework für Integration,
Build und Deployment bei Maintenance- und
Reengineering-Prozessen. Softwaretechnik-Trends
31(2) (2011)

[6] Christian Zillmann, Andreas Winter, Alex
Herget, Werner Teppe, Marianne Theurer, Andreas
Fuhr, Tassilo Horn, Volker Riediger, Uwe Erdmenger,
Uwe Kaiser, Denis Uhlig, Yvonne Zimmermann: The
SOAMIG Process Model in Industrial Applications.
CSMR 2011: 339-342

[7] Werner Teppe: Migrationen - (K)eine
Alternative für Langlebige Softwaresysteme?
Softwaretechnik-Trends 33(2) (2013)

[8] Uwe Kaiser, Uwe Erdmenger, Denis Uhlig,
Andreas Loos: Methoden und Werkzeuge für die
Software Migration. In: Proceeding of: 10th
Workshop Software Reengineering, 5-7 May 2008,
Bad Honnef

[9] Uwe Erdmenger, Denis Uhlig: Konvertierung
der Jobsteuerung am Beispiel einer BS2000-
Migration. Softwaretechnik-Trends 27(2) (2007)

[10] Uwe Erdmenger: SPL- Sprachkonvertierung
im Rahmen einer BS2000 Migration.
Softwaretechnik-Trends 26(2) (2006)

[11] Werner Teppe: Data Reengineering and
Evolution in (industriellen) Legacy Systemen.
Softwaretechnik-Trends 34(2) (2014)

Quality

Nils Göde – Quality Control in Action

Jens Borchers – Software-Qualitätsmanagement im Rahmen von Application Management
Services

Martin Brandtner, Philipp Leitner and Harald Gall – Profile-based View Composition in
Development Dashboards

Quality Control in Action∗

Nils Göde

CQSE GmbH
Lichtenbergstr. 8, 85748 Garching bei München

goede@cqse.eu

Zusammenfassung

Trotz der großen Zahl statischer Analysewerkzeuge,
die Qualitätsdefizite im Quelltext aufzeigen, nimmt
die Qualität in den meisten Systemen kontinuierlich
ab. Der Schritt von der reinen Beobachtung zu einer
echten Verbesserung stellt in der Praxis immer noch
eine große Hürde dar. Dieser Beitrag beschreibt un-
sere Erfahrungen bei der schrittweisen Einführung ei-
nes Quality-Control-Prozesses für ein Java-System in
der Versicherungsbranche. Unsere Ergebnisse zeigen,
dass allein durch den Einsatz von statischer Analyse
noch keine Qualitätsverbesserung erzielt wird. Durch
einen begleitenden Quality-Control-Prozess lässt sich
die Qualität allerdings kontinuierlich steigern.

1 Quality Control

Das Ziel von Quality Control ist die Reduktion der
Qualitätsdefizite (

”
Findings“) im Quelltext und die

damit einhergehende langfristige Sicherung der Wart-
barkeit. Quality Control fasst dabei alle Maßnahmen
zusammen, die für die Verbesserung der Qualität er-
forderlich sind. Eine ausführlichere Beschreibung des
Vorgehens findet sich in [5].

2 Setup

Bei dem beobachteten Java-System handelt es sich
um ein betriebliches Informationssystem aus der Ver-
sicherungsbranche mit einer Historie von mehreren
Jahren. Der Quelltext wird kontinuierlich durch das
Analysewerkzeug Teamscale[3, 4] auf Qualitätsdefizi-
te untersucht. Die Ergebnisse stehen den Entwicklern
durch ein Web-Interface sowie direkt in der IDE zur
Verfügung.

Zusätzlich finden monatliche Retrospektiven statt
in denen wir als externe Experten der CQSE die Ent-
wicklung der Qualität mit den Entwicklern diskutie-
ren. Auf dieser Basis erstellen wir für ausgewählte
Findings konkrete Arbeitsaufträge (

”
Tasks“), die im

Issue-Tracker eingestellt und bei der Sprintplanung
berücksichtigt werden.

∗Das diesem Artikel zugrundeliegende Vorhaben wurde mit
Mitteln des Bundesministeriums für Bildung und Forschung un-
ter dem Förderkennzeichen Q-Effekt, 01IS15003A gefördert.
Die Verantwortung für den Inhalt dieser Veröffentlichung liegt
bei den Autoren.

10/2011 03/2013 02/2015

Systemgröße [kLOC]

Findings

306

145

3.298

1.873

9,7

10,1

10/2008
0

Klonüberdeckung [%]

Audit TeamscaleControl
EinführungQuality

Start

Phase 1 Phase 2 Phase 3

Abbildung 1: Trend zentraler Metiken

3 Evolution

Abbildung 1 zeigt die Entwicklung der zentralen Me-
triken vom Beginn der Versionsverwaltung bis heute.
Diese beinhalten die Größe des Systems, die Klon-
überdeckung und die Zahl der Findings. Die Abbil-
dung zeigt, dass sich die Systemgröße im beobachteten
Zeitraum etwa verdoppelt hat. Die Zahl der Findings
ist auch deutlich gestiegen, während die Klonüberde-
ckung leicht gesunken ist.

Die Evolution lässt sich grob in drei Phasen un-
terteilen. Der Übergang von der ersten zur zwei-
ten Phase besteht aus einem umfassenden Audit des
Quelltextes durch die CQSE und der Einführung von
ConQAT [1] zur kontinuierlichen Analyse des Quell-
textes. Der Übergang zur dritten Phase ist charakteri-
siert durch den Beginn des Quality-Control-Prozesses.
Im Laufe der dritten Phase wurde ConQAT zudem
durch das Werkzeug Teamscale abgelöst.

Während die Systemgröße in jeder Phase etwa
gleichbleibend zunimmt, nimmt die Zahl der Findings
und die Klonüberdeckung in den ersten Phase deut-
lich zu. Auch in der zweiten Phase nimmt die Qua-

lität weiter ab – trotz der Tatsache, dass der Audit
den Entwicklern einen umfassenden Überblick über
die Qualitätsdefizite gegeben hat und der Quelltext
kontinuierlich durch ConQAT analysiert wurde. Erst
in der dritten Phase, nach der Einführung des Quality-
Control-Prozesses, ist eine Trendwende erkennbar, die
durch die Einführung von Teamscale noch einmal
deutlich verstärkt wird.

4 Beobachtungen

Dieser Abschnitt fasst unsere im Laufe des Projektes
gesammelten Beobachtungen zusammen, die gleichzei-
tig die Ausgangsbasis für zukünftige Verbesserungen
des Quality-Control-Prozesses bilden.

4.1 Externer Quality Engineer (QE)

Es hat sich bewährt die Rolle des QE außerhalb des
Entwicklungsteams zu besetzen. Anderenfalls besteht
die große Gefahr, dass das Thema Qualität permanent
zugunsten des Tagesgeschäftes vernachlässigt wird.
Durch die externe Besetzung ist sichergestellt, dass
das Team regelmäßig mit dem Thema Qualität kon-
frontiert wird.

4.2 Interner Ansprechpartner

Zusätzlich zum QE hat es sich bewährt, einen An-
sprechpartner aus dem Team zu ernennen, der unter
anderem die Kommunikation mit dem QE führt. Die
Hauptaufgabe dieser Person ist dafür zu sorgen, dass
die vom QE erstellten Tasks und Themen Einzug in
die Team-interne Sprintplanung erhalten.

4.3 Tasks in Sprintplanung

Um die Bearbeitung der vom QE erstellten Tasks
zu gewährleisten, müssen diese gleichberechtigt mit
anderen Änderungen in der Entwicklungsplanung
berücksichtigt werden. Hierfür sollte der interne An-
sprechpartner aus dem Team verantwortlich sein. Be-
vor dies praktiziert wurde, sind Qualitätsverbesserun-
gen häufiger im Zuge vieler anderer Änderungen

”
ver-

gessen“ worden.

4.4 Pfadfinderregel

Das Befolgen der Pfadfinderregel – den Code qualita-
tiv besser oder zumindest gleichwertig zu hinterlassen
wie man ihn vorgefunden hat – wird in der Praxis lei-
der noch nicht konsequent befolgt. Das Problem an
dieser Stelle ist zum einen die Frequenz der Analy-
se (erst nach dem Commit stehen die neuen Findings
zur Verfügung). Zum anderen stellt sich die Behebung
mancher Findings als sehr aufwändig heraus, so dass
das Verhältnis des Aufwands zwischen der eigentli-
chen Änderung und der Qualitätsverbesserung nicht
gerechtfertigt scheint.

4.5 IDE-Integration

Ohne die Integration der Findings in die IDE ist eine
Qualitätsverbesserung kaum zu erzielen. Der Kontext-

wechsel von der IDE in z.B. eine Web-basierte An-
sicht ist nicht praktikabel. Erst mit der Einführung
des Teamscale-Plugins ist die Zahl der Findings, die
im Rahmen anderer Änderungen entfernt wurden
spürbar gestiegen.

4.6 Web-Dashboard

Auch wenn die Web-basierte Ansicht im Vergleich zur
einfachen Ansicht der Findings in der IDE eine Fülle
weiterer Informationen bietet, so wird diese von Ent-
wicklern fast nicht berücksichtigt. Andererseits ist die
Web-basierte Ansicht für den QE zwingend erforder-
lich, da nur hier die notwendigen Delta-Informatio-
nen [2] und die Evolution der Findings sichtbar ist.

4.7 Know-How Transfer

Durch die monatlichen Retrospektiven, bei denen aus-
gewählte Qualitätsdefizite im ganzen Team diskutiert
werden, entsteht ein nicht zu unterschätzender Know-
How-Tansfer. Dies betrifft sowohl Wissen über die
Java-Programmierung im Allgemeinen als auch Wis-
sen über das System im Speziellen. Zudem werden un-
ter Umständen übergreifende Probleme diskutiert, die
sich aus der lokalen Sicht einzelner Entwickler nicht
lösen lassen.

4.8 Ressourcenbedarf

Um Qualitätsverbesserung in der Praxis zu erreichen,
müssen dem Thema entsprechende Ressourcen zur
Verfügung gestellt werden. In diesem konkreten Pro-
jekt wird in jedem Sprint ein festgelegter Prozent-
satz des Entwicklungsbudgets für nicht-fachliche tech-
nische Qualitätsverbesserungen reserviert. Dadurch
wird vermieden, dass Qualitätsverbesserungen dem
Tagesgeschäft zum Opfer fallen.

5 Zusammenfassung

Der Trend in Abbildung 1 zeigt, dass durch Quality
Control eine kontinuierliche Qualitätsverbesserung er-
zielt wird. Aufgrund der überwiegend positiven Erfah-
rungen und Ergebnisse wird das Verfahren zukünftig
auf weitere Projekte ausgeweitet.

Literatur

[1] CQSE GmbH. ConQAT. www.conqat.org.
[2] N. Göde and F. Deissenboeck. Delta analysis. Soft-

waretechnik-Trends, 32(2), 2012.
[3] N. Göde, L. Heinemann, B. Hummel, and D. Steidl.

Qualität in Echtzeit mit Teamscale. Softwaretechnik-
Trends, 34(2), 2014.

[4] L. Heinemann, B. Hummel, and D. Steidl. Teamscale:
Software quality control in real-time. In Proceedings
of the 36th International Conference on Software En-
gineering, 2014.

[5] D. Steidl, F. Deissenboeck, M. Poehlmann, R. Heinke,
and B. Uhink-Mergenthaler. Continuous software qua-
lity control in practice. In Proceedings of the 30th In-
ternational Conference on Software Maintenance and
Evolution, 2014.

Software-Qualitätsmanagement
im Rahmen

von Application Management Services

Jens Borchers
Sopra Steria Consulting Hamburg

Email: jens.borchers@soprasteria.com / jensborchers@acm.org

Abstract: Application Management Services sind als
Outsourcing-Modell für den Betrieb und die Wartung von
Softwaresystemen mittlerweile weit verbreitet. Dabei
werden häufig beide Stränge, der „run the business“
(RTB) und „change the business“ (CTB) –Teil, vom
selben Dienstleister betreut. Dieser hat damit wie der
Auftraggeber selbst ein vitales Interesse an einer stabilen
Software, die außerdem in der Wartung nicht zu unnötig
Kosten führt. Dazu ist es notwendig, die Qualität der
Anwendungssysteme nicht nur in fachlicher Richtung
(durch entsprechende Tests) abzusichern, sondern auch
die nicht-funktionalen und Produktivitätsmetriken aktiv
zu messen und für eine optimierte Steuerung der
Wartungsressourcen einzusetzen. Dieser Beitrag
beleuchtet den Einsatz von Software-Qualitätssicherung
im Rahmen von Application Management Services aus
Sicht eines AMS-Dienstleisters.

1 Einführung

1.1 Application Management Services

Wie in [1] dargestellt, ist das Outsourcing von IT-
nahen Aufgaben eine seit vielen Jahren etablierte
Strategie, mit der Unternehmen sowohl Kosten- als
auch andere strategische Ziele umsetzen. Dabei
sind auch sog. Application Management Services
(AMS) zunehmend anzutreffen. Beim AMS
übernimmt ein Dienstleister den gesamten Betrieb
und i.d.R. auch die Wartung eines oder mehrerer
Anwendungssysteme. Für AMS sind i.d.R.
umfangreiche Vertragswerke erforderlich, in denen
die zu erbringenden Leistungen sehr detailliert
vereinbart werden, und zwar auch in Form sog.
„Service Level Agreements“ (SLA), vgl. [1], die
auch Qualitätsvorgaben umfassen.

1.2 Software-Qualitätssicherung

Die Qualitätssicherung von Software ist eine seit
vielen Jahren bekannte Disziplin innerhalb der
Entwicklung und Wartung von Softwaresystemen
(vgl. [2]).
Im Rahmen von AMS spielt dabei für beide
Vertragspartner eine gemeinsam abgestimmte
Ermittlung der Software-Qualität eine essentielle
Rolle. Dabei geht es neben den fachlichen Aspekten
auch um nicht-funktionale Anforderungen. Diese

basieren i.d.R. auf den ISO-Standards der ISO/IEC
250xx-Reihe ([5]).
In den folgenden Kapiteln wird dargestellt, welche
Qualitätssicherungsaspekte im Rahmen von AMS
eine Rolle spielen und wie sie in der Praxis umgesetzt
werden können.

2 Einsatz von Qualitätsmessungen im
AMS-Lebenszyklus

Die Hauptphasen eines AMS-Engagements stellen
sich – vereinfacht dargestellt – in der Regel wie folgt
dar:
a. Ausschreibung der AMS-Leistungen ;
b. Ermittlung der wesentlichen Angebotsfaktoren

durch potentielle Auftragnehmer;
c. Auswahl von einem bis (i.d.R. max.) drei

Anbietern für Vertragsverhandlungen;
d. Ausarbeitung und Unterzeichnung des

detaillierten Vertragswerks;
e. Überführung der Systeme in die Hoheit des

Auftragnehmers;
f. Betrieb und Wartung der Anwendungssysteme

über den vereinbarten Zeitraum;
g. Rückführung der Systeme an den Auftraggeber

oder einen anderen Dienstleister bei Ende des
AMS-Vertrags, die sog. „Reverse Transition“.

Wo kommen nun in diesen Phasen
Qualitätsmessungen zum Einsatz und in welchem
Umfang?

Vertragsanbahnungs-Phasen (a – b)
Bereits der Auftraggeber kann in seinen
Ausschreibungsunterlagen Aussagen zu wesentliche
Kennzahlen der auszulagernden Systeme machen.
Diese können aber in der Detailtiefe stark variieren.
Wenn es um die Einschätzung des Risikos und die
Entscheidung über die Investition in ein
Gesamtportfolio von Anwendungssystemen geht,
kann diese Entscheidungsbasis mit Hilfe einer sog.
Rapid Portfolio Analysis (RPA) hergestellt werden.

Vertragsdetaillierungs-Phasen (c – d)
Hier wird häufig der Begriff der „Due Diligence“
verwendet eine mit „gebotener Sorgfalt“ durch-

geführte Risikoprüfung“ der zu übernehmenden
Systeme in Bezug auf die durch den Dienstleister
zu übernehmenden Verantwortlichkeiten umfasst.
Erst nach einer entsprechenden Due Diligence kann
der Anbieter seriös ein bindendes Vertragsangebot
erstellen.

Transition- und Betriebs-Phasen (e – f)
Nach dem Vertragsabschluss mit dem ausgewählten
Dienstleister beginnt die sog. „Transition“, in der
alle Systeme und zugehörigen Prozesse vom
Auftraggeber in die Verantwortung des AMS-
Dienstleisters übergehen. Für die eigentliche
Betriebs- (RTB-) und Wartungs- (CTB-) Periode,
die ja normalerweise mehrere Jahre dauert, bilden
heute Qualitätsstandards eine wesentliche Säule der
sog. Service Level Agreements zwischen
Auftraggeber und Dienstleister.

Transition- und Betriebs-Phase (g) – Reverse
Transition
Sofern der AMS-Vertrag am Ende der Laufzeit
nicht verlängert werden soll, wenn also entweder
der Auftraggeber die Systeme wieder in die eigene
Verantwortung überführen will („In-Sourcing“)
oder aber den Vertrag einem anderen Dienstleister
übertragen will, bilden die Qualitätsmessungen aus
Basis des letzten erstellten Releases den Nachweis
für die nicht-funktionale Qualität der betreuten
Anwendungssysteme.

3 Aktives Qualitätsmanagement im
Rahmen von AMS

In den meisten AMS-Engagements spielt die CTB-
Organisation eine wesentliche Rolle und kann den
Aufwand für den reinen Betrieb, also die RTB-
Seite, deutlich übersteigen. Die CTB-Organisation
kümmert sich um die Wartung und
Weiterentwicklung der Anwendung. Sie ist damit
auch Hauptnutzer von Qualitätssicherungs-
maßnahmen im Rahmen von AMS. Die CTB-
Prozesse für die fachliche Weiterentwicklung
gliedern sich normalerweise in die übliche
Fertigungskette. Nach der Fertigstellung von
Softwarekomponenten durchlaufen diesedie
Qualitätsprüfungen, um die fachliche und
grundlegende technische Eignung für den
Produktionsbetrieb nachzuweisen. Neben den aus
der Software selbst ermittelten
Qualitätsbewertungen spielen als weitere
wesentliche Dimension die betrieblichen
Kennzahlen eine Rolle für den Nachweis einer
leistungsfähigen AMS-Organisation.

Neben Software-Metriken spielt auch die Messung
der Produktivität eine wesentliche Rolle. Daher
sind im Rahmen von AMS neben den reinen

Qualitätsmaßen auch die fachliche Größe der
Anwendung und Aufwandszahlen zu erfassen, um die
Produktivität der Wartungs- und Entwicklungs-
prozesse bewerten und steuern zu können. Zum
Schätzen des Entwicklungsaufwands wurde er von
Albrecht [3] bereits Ende der siebziger Jahre die
„Function Point-Methode“ eingeführt. Mit der
internationalen Standardisierung durch die Object
Management Group (OMG) ist ein einheitliches
Regelwerk zur nachträglichen Ermittlung der
Function Points und damit die Basis für
Produktivitätsmessungen geschaffen worden (vgl.
[4]).

4 Fazit

Im Rahmen von Application Management Services
sind die Messung der inhärenten Qualität aller
Softwarekomponenten und die Korrelation mit
betrieblichen Kennzahlen eine wesentliche Aktivität
für die Steuerung der Wartungs- und
Entwicklungsprozesse im Rahmen des CTB-Teils.
Neben der Qualitätsmessung spielt auch die objektive
Ermittlung der Leistungsfähigkeit der AMS-
Entwicklungsorganisation eine wesentliche Rolle, um
neben der Qualität auch die Wirtschaftlichkeit aller
Maßnahmen bewerten zu können.

5 Literatur

[1] Jens Borchers: Industrialisierung von
Application Management Services auf Basis
von Standards wie ISO 20000, 35. WI-MAW-
Rundbrief, FB Wirtschaftsinformatik der
Gesellschaft für Informatik, Jahrgang 19, Heft
1, April 2013, ISSN 1610-5753

 [2] Ernest Wallmüller: Software-Qualitäts-
management in der Praxis, Hanser, 2001, ISBN
978-3-446-21367-8

 [3] Allan J. Albrecht: Measuring Application
Development Productivity,
Proc. of IBM Application Development
Symposium, October 1979, pp. 83-92.

[4] OMG: Automated Function Points, January
2014, http://www.omg.org/spec/AFP/1.0/,
Zugriff am 08.08.2014

[5] http://www.iso.org, Zugriff am 08.08.2014

Profile-based View Composition in Development Dashboards

Martin Brandtner, Philipp Leitner, Harald Gall

University of Zurich, Switzerland
{brandtner, leitner, gall}@ifi.uzh.ch

Abstract

Continuous Integration (CI) environments cope with
the repeated integration of source code changes and
provide rapid feedback about the status of a soft-
ware project. However, as the integration cycles be-
come shorter, the amount of data increases, and the
effort to find information in statically composed CI
dashboards becomes substantial. We want to address
the shortcoming of static views with a so-called Soft-
ware Quality Assessment (SQA) mashup and profiles.
SQA-Mashup describes an approach to enable the in-
tegration and presentation of data generated in CI
environments. In addition, SQA-Profiles describe sets
of rules to enable a dynamic composition of CI dash-
boards based on stakeholder activities in tools of a CI
environment (e.g., version control system).

1 Introduction

A fundamental aspect of Continuous Integration (CI)
according to Fowler is visibility: ”[...] you want to
ensure that everyone can easily see the state of the
system and the changes that have been made to it.”[4].
The integration of a modern CI environment within
the development process of a software project is fully
automated, and its execution is triggered after every
commit. With each integration run, modern CI tools
generate a bulk of data. However, this data is scat-
tered across the entire CI environment and analyzing
it, for instance, to monitor quality of a system, is a
time consuming task. This can delay the rapid feed-
back cycles of CI and one of its major benefits is then
not realized.

The need for an integration and the tailoring of
data generated by the tools used in a CI environment
is expressed in studies that address the information
needs of software developers. Questions are, for exam-
ple, What has changed between two builds [and] who
has changed it? [5].

In this work, we briefly revisit our approaches to
support the answering of such questions. We cherry-
picked parts of our previous research, which was pub-
lished at the International Conference on Software
Analysis, Evolution, and Reengineering [2] and the
Information and Software Technology Journal [1].

2 SQA-Mashup

The goal of the SQA-Mashup approach [1] is to inte-
grate the information scattered across CI tools into a
single view. The information is presented according
to the information needs of different stakeholders.

Figure 1: SQA-Mashup: Integrated view

We aim for a fast and easy way to analyze and com-
municate the actual state, the current health, and the
most recent changes of a system. Figure 1 depicts the
integration of data from a CI environment to present it
to different stakeholders. The CI environment – Tool
view in Figure 1 represents the information gather-
ing process of, for example, a software tester during a
quality measurement review. Starting from a quality
analysis platform (A1), where the tester detects an
increase of convention violations, the developer nav-
igates to the build platform (A2) and from there to
the associated source code commits (A3) to locate the
causes of the violations. However, during a develop-
ment or testing task, such as bug fixing, only some
data of each CI tool is relevant to solve the task. The
highlighted elements (D1-D5) in the single tools indi-
cate the data accessed by the software tester during
his review. Our proposed mashup integrates the single
pieces of data from different CI tools into a condensed
model to dynamically represent the data according to
the information needs of a stakeholder.

To evaluate our model-based approach, we de-

signed and conducted a controlled user study with 16
participants who had to solve nine software mainte-
nance tasks. The control group had to use state-of-
the-art CI tools and a social coding platform: Jenkins-
CI and SonarQube as the CI tools and GitHub as the
social coding platform. The experimental group had
to use SQA-Mashup, which is a tool that was imple-
mented according to the equally named model.

Overall, we found evidence that the participants of
the experimental group solved the tasks of our study
faster (57%) and with a higher correctness (21.6%).
When analyzing these differences on the level of the
individual tasks we found major insights in the ben-
efits of monitoring the CI process and the capabili-
ties of existing CI tools. On the one hand, regarding
single aspects of software quality, such project size
or code complexity, existing CI-tools provide already
good support. On the other hand, we found evidence
that monitoring software quality during CI can sub-
stantially benefit from an integrated view.

3 SQA-Profiles

The aim of the SQA-Profiles approach [2] is the profil-
ing of stakeholders within a group of software project
stakeholders. An example for such a stakeholder
group is the project management committee (PMC)
in Apache projects.1 In comparison to other groups,
such as committers, the covered spectrum of tasks
is broader in a PMC. For example, committers work
on issues and contribute source code changes. PMC
members actively contribute issues and source code as
well, but the PMC is additionally in charge of project
and community management. The management of
the project incorporates tasks, such as monitoring or
gatekeeping. A benefit of using a committee com-
pared to a single manager is the ability to share tasks
among the different committee members. For exam-
ple, some PMC members might focus on source code
integration, whereas others taking care of the issue
management and gatekeeping. However, the resulting
different focus of the PMC members requires a dif-
ferent view on the data presented in dashboards as
well [3]. With SQA-Profiles we tried to extract the
different focus of PMC members from a collection of
Apache projects and to describe them in a project-
independent and rule-based manner. We extracted
following activity attributes: commits, merges, is-
sue status changes, issue comments, issue assignee
changes, and issue priority changes. We found four
distinct profiles. One of these profiles is the so-called
Integrator profile. Any PMC member with this profile
has a high merge and commit activity in the according
Apache project. The thresholds for a high, medium,
and low activity in a certain attribute get computed
automatically and individually for each project.

To evaluate our proposed approach, we studied
the activity data of PMC members from 20 Apache

1http://www.apache.org/foundation/how-it-works.html

projects that use Java as main language between
September 2013 and September 2014.

Overall, we found evidence that activity data
mined from the VCS and the issue tracking platform
can reflect the tasks of stakeholders within a certain
group. The evaluation results (precision: 0.92, re-
call: 0.78) showed that the automatic SQA-Profile ap-
proach performs almost as good as the semi-automatic
baseline, which requires project-dependent threshold
parametrization. Additionally, we were able to show
that an assigned role in a software project does not
necessarily reflect the actual activities of a stake-
holder. For example, in some projects normal con-
tributors take care of PMC tasks.

4 Bridge the Gap

SQA-Mashup and SQA-Profiles address different as-
pects to bridge the gap between the information avail-
able and the information needed by a stakeholder.
The first provides a model to integrate and present CI
data and the second enables a categorization of stake-
holders based on their activity. To finally bridge the
gap and to enable a profile-based view composition,
a consolation of research in the field of information
needs is required to determine a mapping between
the profiles and the available CI data to satisfy the
individual information needs.

5 Conclusion

In this work, we revisited two approaches that can
enable the integration, tailoring, and presentation
of scattered data collected from modern CI environ-
ments. We shortly highlighted the potentials of the
approaches and described the remaining challenges to
bridge the gap between the information available and
the information needed by a stakeholder.

References

[1] M. Brandtner, E. Giger, and H. Gall. Sqa-mashup:
A mashup framework for continuous integration.
Information and Software Technology, 2014.

[2] M. Brandtner, S.C. Müller, P. Leitner, and H.C.
Gall. Sqa-profiles: Rule-based activity profiles
for continuous integration environments. In Proc.
SANER, pages 301–310, 2015.

[3] R.P.L. Buse and T. Zimmermann. Information
needs for software development analytics. In Proc.
ICSE, pages 987–996, 2012.

[4] M. Fowler. Continuous integration. 2006.
http://www.martinfowler.com/articles/

continuousIntegration.html.

[5] T. Fritz and G.C. Murphy. Using information frag-
ments to answer the questions developers ask. In
Proc. ICSE, pages 175–184, 2010.

http://www.apache.org/foundation/how-it-works.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html

Tool Demos

Nils Göde Teamscale

Arne Wichmann Kuestennebel

Dilshodbek Kuryazov Q-MIG

Architecture

Michael Langhammer and Klaus Krogmann – A Co-evolution Approach for Source Code and
Component-based Architecture

Robert Heinrich, Kiana Rostami, Johannes Stammel, Thomas Knapp and Ralf Reussner –
Architecture-based Analysis of Changes in Information System Evolution 21

Jens Knodel, Matthias Naab and Balthasar Weitzel – Modularity - Often Desired, Too Often
Failed

A Co-evolution Approach for Source Code and Component-based

Architecture Models∗

Michael Langhammer
Karlsruhe Institute of Technology

Karlsruhe, Germany
michael.langhammer@kit.edu

Klaus Krogmann
FZI Research Center for Information Technology

Karlsruhe, Germany
krogmann@fzi.de

Abstract

During the lifecycle of a software system, the software
needs to evolve, e.g, through new features or necessary
platform adaptions. If architecture and source code
are not kept consistent during this software evolution,
well-known problems, such as architecture drift and
architecture erosion, can occur.

To solve these problems, existing approaches usu-
ally focus on the consistency between UML class di-
agrams and code, or use approaches where the archi-
tecture model can completely be generated from the
code.

In this paper, we present a fully integrated co-
evolution approach for component-based architecture
and source code based on Vitruvius. We also present
initial, extendable mapping rules from component-
based architecture to source code.

1 Introduction

Architecture drift and architecture erosion are two
well known problems, which can occur during soft-
ware evolution [7]. They can occur e.g., if code evolves
independently from the system’s architecture.

In this paper, we present a co-evolution approach
that helps software architects and developers to
prevent architecture drift between source code and
component-based software architecture. This ap-
proach is based on a view-centric engineering ap-
proach called Vitruvius[5] [6]. Vitruvius (see Fig-
ure 1) can be used to keep heterogeneous models con-
sistent during the development of a system. It is based
on the idea of having all information that to a soft-
ware system stored within a SUM (Single Underlying
Model)[2]. The access to this SUM is only possibles
via well-defined views. While a SUM eases accessing
a single underlying information source, it is hardly
applicable in practice since it requires a single world
model. To reuse existing meta-models and models
within Vitruvius we have introduced the idea of a
so called VSUM (Virtual Single Underlying Model)[5],
which orchestrates all individual used models with-
out extending or changing models or meta-models.

∗Acknowledgment: This work funded by the German Re-
search Foundation in the Priority Programme SPP1593

PCM element Source code element

Repository three packages: main,
contracts, datatypes

Component Package in main pack-
age and public com-
ponent realization class
within the package

Interface Interface in contracts
package

Signature¶meters Operation¶meters

Datatype Class with getter and
setter for inner types

Required role Member typed with
required interface and
constructor parame-
ter for member

Provided role Main class of providing
component implements
the provided interface

Table 1: Initial mapping between architectural model
elements (PCM) and source code elements (Java)

Within Vitruvius, mapping rules describe the over-
lap between heterogeneous models of the VSUM. This
can be done either by using the MIR (Mapping In-
variant Response) language, which we are currently
developing, or using Xtend1. The MIR or Xtend rules
transform changes among models. Therefore, Vitru-
vius monitors all views respectively editors acquire
atomic changes. These atomic changes are used as
input for the consistency preserving transformations,
which translate changes element by element.

2 Co-evolution approach

The current focus of our work is the application of
Vitruvius to component-based software architecture
and code (see Figure 1). Vitruvius solely oper-
ates on models. As a component-based architecture

1http://eclipse.org/xtend/

P��

U��

J���

M��

M��

VSUM

WebGUIImpl

UIInfo GUILayout

��	
�� ������� ����

V�1

WebGUIImplimplements

C��C�����
��

Implementation View

V�2

V�3

C��C���� ������� ����

V�5

@����� !"�"#$%&implements-'(� (#"#$ WebGUI)

public class W")*+��� ! implements �I,,. {

public F/!" HTTPDownload (Request request) {

//Handle request

} }

Annotated Java
Source Code View

V�6

public class W")*+��� ! implements �I,,. {

public F/!" HTTPDownload (Request request) {

//Handle request

} }

Java Source Code View

Instance of a View Type

View Transformation
M�� Mapping/Invariant/Response

WebGUI
012345678191:;<=

>?ABDE GH KLLN?O�Q?RS RT Vitruvius to component-based software engineering with multiple views. For our
first prototype we only use PCM and JaMoPP as meta-models within the VSUM (Virtual Single Underlying
Model) and the standard component views for PCM and the source code view for JaMoPP.

model, we use the the PCM (Palladio Component
Model)[3]. The PCM offers users the creation of a
component-based architecture in terms of components
and interfaces.To get a model representation of the
source code, we use JaMoPP (Java Model Parser and
Printer)[4], which extracts an EMF-based (Eclipse
Modelling Framework) representation of Java code.

To use Vitruvius we have implemented a mon-
itor for the Eclipse Java code editor and for EMF-
based models [6]. We also have defined initial mapping
rules (see Table 1) from component-based architecture
models to Java source code. The current prototype is
able to round-trip architecture and code for the above-
mentioned mapping rules. Further mapping rules to
Eclipse Plugins and a dependency injection framework
will be realised in our ongoing work.

3 Related work

Existing approaches, e.g., IBM Rational Rhapsody2,
support round-trip engineering but rely on source code
as the single information source and generate other
representations, such as class diagrams from it. Other
approaches, e.g., UMLLab3, ensure consistency be-
tween UML class diagrams and source code, but not
between component diagrams and source code. Arch-
Java[1] includes architectural constructs (e.g., ports)
into the source code itself while our approach is not
invasive.

4 Conclusion

In this paper, we presented our co-evolution approach
for component-based software architecture and source
code, which is based on theVitruvius approach. Our

2http://www-03.ibm.com/software/products/de/ratirhapfami
3http://www.uml-lab.com/

co-evolution approach helps software developers and
architects evolving their software system by keeping
the architecture and the source code consistent during
the evolution of a software system.

References

[1] J. Aldrich, C. Chambers, and D. Notkin. “Arch-
Java: connecting software architecture to imple-
mentation.” In: Proceedings ICSE 2002. IEEE.
2002, pp. 187–197.

[2] C. Atkinson, D. Stoll, and P. Bostan. “Or-
thographic Software Modeling: A Practical Ap-
proach to View-Based Development”. In: Evalua-
tion of Novel Approaches to Software Engineering.
Springer, 2010.

[3] S. Becker, H. Koziolek, and R. Reussner. “The
Palladio component model for model-driven per-
formance prediction”. In: Journal of Systems and

Software 82.1 (2009), pp. 3–22.

[4] F. Heidenreich et al. “Closing the gap between
modelling and java”. In: Software Language En-

gineering. Springer, 2010, pp. 374–383.

[5] M. E. Kramer, E. Burger, and M. Langhammer.
“View-centric engineering with synchronized het-
erogeneous models.” In: Proceedings of the 1st

Workshop on VAO. ACM. 2013.

[6] M. E. Kramer et al. “Change-Driven Consistency
for Component Code, Architectural Models, and
Contracts.” In: Proceedings of the 18th Interna-

tional ACM Sigsoft Symposium on CBSE. ac-
cepted, to appear. ACM, 2015.

[7] D. Perry and A. Wolf. “Foundations for the study
of software architecture”. In: ACM SIGSOFT

Software Engineering Notes (1992).

Architecture-based Analysis of Changes in

Information System Evolution∗

Robert Heinrich1, Kiana Rostami1, Johannes Stammel2, Thomas Knapp1, Ralf Reussner1
1Karlsruhe Institute of Technology (KIT), {heinrich,rostami,reussner}@kit.edu

2andrena objects ag, johannes.stammel@andrena.de

Abstract

Software is subject to continuous change. Software
quality is determined by large extent through archi-
tecture which reflects important decisions, e.g. on
structure and technology. For sound decision making
during evolution change impacts on various system
artifacts must be understood. In this paper, we intro-
duce a new evolution scenario (replacing the database)
to an established demonstrator for information sys-
tem evolution. We demonstrate the application of an
architecture-based approach for change impact anal-
ysis to identify artifacts affected by the scenario.

1 Introduction

Software-intensive systems, such as information sys-
tems, are frequently operated over decades. In indus-
trial practice these systems face diverse changes, e.g.
due to emerging requirements, bug fixes, or adapta-
tions in their environment, such as legal constraint or
technology stack updates [6]. As a result, the systems
change continually which is understood as software
evolution [5]. The software architecture is one of the
central artifacts of software-intensive systems and is
crucial in evolution. Software development and oper-
ation involve a variety of organizational and technical
roles covering different responsibilities and knowledge.
Thus, coordinating and implementing changes is dif-
ficult. Although these roles are very heterogeneous,
they all use artifacts which are tightly related to soft-
ware architecture. Reflecting changes in software ar-
chitecture models helps to identify maintenance tasks
for associated artifacts like source code or test cases.

In this paper, we introduce a new evolution sce-
nario “replacing the database” to the Common Com-
ponent Modeling Example (CoCoME) [7] which serves
as a common case study on information system evo-
lution. An overview of CoCoME is given in Sec. 2.
We use the tool-supported approach Karlsruhe Ar-
chitectural Maintainability Prediction (KAMP) [3] for
change impact analysis based on change requests in
an architecture model. Sec. 3 introduces KAMP. In
Sec. 4, we demonstrate how to apply KAMP to the

∗This work was partially supported by the DFG (German
Research Foundation) under the Priority Programme SPP1593:
Design For Future – Managed Software Evolution.

evolution scenario for identifying artifacts affected by
the change request. The paper concludes in Sec. 5.

2 CoCoME – A Case Study on Infor-
mation System Evolution

CoCoME represents a trading system as it can be ob-
served in a supermarket chain handling sales. This
includes processing sales at a single store as well
as enterprise-wide administrative tasks like ordering
products or inventory management. The CoCoME
system is organized as a three-layer software archi-
tecture which allows for distributing the system on
server nodes and for remote communication. Detailed
description is given in [7]. CoCoME has been set up as
a common demonstrator in a Dagstuhl research sem-
inar. Since CoCoME has been applied and evolved
successfully in various DFG and EU research projects,
several variants of CoCoME exist, spanning different
platforms and technologies, such as plain Java code,
service-oriented or hybrid Cloud-based architectures.
Various artifacts from development and operation are
available, such as requirements specification, design
decisions, source code, architecture models, or moni-
toring and simulation data, that evolved over time.

The new evolution scenario “replacing the
database” refers to the plain Java variant of CoCoME.
In the scenario, CoCoME faces performance issues. In
order to avoid them the company which operates Co-
CoME decides to replace the existing database. They
shift away from a relational database (e.g., MySQL)
to a non-relational database (e.g., CouchDB).

3 Architecture-based Change Impact
Analysis

KAMP [3] explicitly includes formal architecture de-
scriptions by means of meta-models for identifying
change impacts. The approach relies on the follow-
ing assumptions: (a) All artifacts of system devel-
opment and operation must be considered. Focus-
ing only on code is not sufficient. (b) Changes are
initialized through evolution scenarios, resulting into
predictable requirements on changes. (c) It is eas-
ier to identify the effort of fine-grained maintenance
tasks, e.g. adding, deleting, or modifying architecture
elements, than of coarse-grained maintenance tasks.

KAMP consists of two phases – preparation phase
and analysis phase – and is followed by an interpreta-
tion phase. In the preparation phase, an architecture
model for each design alternative to be compared is
created. For this, meta-modeled architecture descrip-
tion languages are applied. Starting with a given evo-
lution scenario, e.g. replacing a middleware technol-
ogy or replacing the database, the considered change
request(s) are identified by a human software archi-
tect. A change request among other things includes
initially affected architecture elements, such as a par-
ticular software component or an interface, that are
already known by the architect. In the analysis phase,
artifacts affected by initially changed architecture el-
ements are identified first. Then, lists of maintenance
tasks (i.e. work plans) specific to the affected artifacts
are created for each architecture alternative. This is
performed automatically by the KAMP tooling for
each architecture alternative and change request. In
the interpretation phase, change efforts are estimated
and architecture alternatives are compared by the ar-
chitect based on the lists of maintenance tasks iden-
tified by the KAMP tooling. KAMP basically com-
prises three contributions [3]: (i) meta-models to de-
scribe system parts and their dependencies, (ii) a pro-
cedure to automatically identify system parts to be
changed for a given change request defined manually
as well as (iii) a procedure to automatically derive re-
quired maintenance tasks from a given change request
to simplify the identification of a change effort and,
by that, the maintainability estimation. Furthermore,
KAMP is proposed to be applied for automated soft-
ware project planning [2] and for deriving work plans
to solve performance and scalability issues [1].

4 Applying KAMP to a CoCoME
Evolution Scenario

Next, we describe how to apply KAMP to the
CoCoME evolution scenario “replacing the database”.
Replacing a relational database by a non-relational
database raises certain consequences. For example,
because JDBC has just been developed to provide a
connection to relational databases, the interface has
to be replaced, too. KAMP is applied to identify such
consequences of changing the database and to find out
all affected components. While in the following only
an overview is given, further details on the application
of KAMP to the scenario and the affected architecture
elements is available in [4].

In the preparation phase, the architect creates
the architecture model of CoCoME and annotates it
with additional information regarding building, de-
ployment, and testing.

In the analysis phase, a copy of the current ar-
chitecture model is created first. Second, the archi-
tect executes the structural changes in the architec-
ture model. S/he deletes the old Database component
in the architecture and adds another one. Moreover,

s/he knows that the interface will not be usable any
more and removes it and adds a new one. After the ar-
chitect has marked all changes in the model copy, s/he
triggers the calculation of the differences between the
original and the copied model. The KAMP tooling
recognizes that the Database component and its inter-
face have been removed and another component and
interface have been added. KAMP maps this informa-
tion to maintenance tasks and builds up a first draft
of a work plan which contains all tasks to realize the
changes.

Next, possible side effects of changing single com-
ponents are analyzed by investigating connections to
other components. In the given scenario, the Data

component (cf. [4]) is affected by changing the Database

component. KAMP recognizes that Data is a compos-
ite component consisting of several sub-components
which are included in the analysis and affected sub-
components are added to the work plan.

After all affected architecture elements have been
mapped to tasks additional tasks for building, deploy-
ment, and testing are considered. For example, given
that the architecture model has been enriched with
test case information, for every test connected to the
Data and Database component a modify and run task
is suggested. This procedure results in comprehen-
sive work plans suitable to implement and estimate
changes.

5 Conclusion

We described the application of KAMP for change im-
pact analysis in the new CoCoME evolution scenario
“replacing the database”. In the future, CoCoME will
be further modified to create new and evolve existing
artifacts by new evolution scenarios such as the intro-
duction of mobile clients.

References

[1] C. Heger and R. Heinrich. Deriving work plans for
solving performance and scalability problems. In
EPEW, pages 104–118. Springer, 2014.

[2] O. Hummel and R. Heinrich. Towards automated soft-
ware project planning - extending Palladio for the sim-
ulation of software processes. In KPDAYS, pages 20–
29. CEUR Vol-1083, 2013.

[3] K. Rostami et al. Architecture-based assessment and
planning of change requests. In 11th Intl. Conference
on the Quality of Software Architectures. ACM, 2015
(accepted to appear).

[4] T. Knapp. KAMP analysis applied to CoCoME. In
Seminar thesis, SDQ Chair, KIT, 2012.

[5] M. M. Lehman and L. A. Belady, editors. Program
Evolution: Processes of Software Change. Academic
Press Professional, Inc., 1985.

[6] R. Heinrich et al. Integrating run-time observations
and design component models for cloud system anal-
ysis. In MRT, pages 41–46. CEUR Vol-1270, 2014.

[7] S. Herold et al. CoCoME – the common component
modeling example. In The Common Component Mod-
eling Example, pages 16–53. Springer, 2008.

– Often Desired, Too Often Failed

Jens Knodel, Matthias Naab, Balthasar Weitzel

Fraunhofer IESE

Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{jens.knodel, matthias.naab, balthasar.weitzel}@iese.fraunhofer.de

Abstract—“Everything should be modular” is an exalted

goal stated by almost every architect – but is it really possible to

achieve this goal? In this experience paper, we share our lessons

learned across a number of restructuring projects that went

modular. We discuss typical business motivations, restructuring

efforts starting with good intentions, and reconstruction reality

striking back. In retrospective, we analyze typical pitfalls to be

circumvented. Examples illustrate our findings and support a

truism too often ignored by architects: everything has its price,

and more often than not, the price for modularity is a lot higher

than initially estimated.

Keywords—architecture, modularity, reconstruction, reverse

engineering, experience report

I. INTRODUCTION

Modularity is a design goal that is often desired by various
stakeholders in development organization, especially if
systems have historically grown and problems in maintaining
them emerge. Modularity is considered to be the silver bullet
in such cases: restructuring the system towards building
blocks of manageable size with defined functionality and
adequate quality. To achieve modularity sounds straight-
forward, but in practice it is not. We have anecdotal evidence
from basically any of our industrial partners starting
modularization initiatives ending in vain. The projects start
with a collection of high-level modularization goals, come up
with an idealistic architecture of the system and fail when
reality strikes back – restructuring the system reveals a lot of
technical constraints not being thought of in advance.
However, there are as well success stories: the risk of failure
can be significantly reduced by avoiding common pitfalls and
applying best practices.

In this paper we present consolidated experiences from a
number of past modularization projects. We introduce an
overview of typical stakeholder goals to be achieved by
modularity. We then present a way for redesigning the system
in order to achieve these goals, followed by the actual
reconstruction. We discuss typical findings and complement
them with best practices.

II. WHY MODULARITY

The requirements of the different product stakeholders
collected at the beginning of a modularization project can be
divided into modularity goals and product requirements that
should be supported by the modularized product. In terms of
product requirements our main experience was that the system
basically should support the same processes with slight
changes. Modularization projects were often also used to get
rid of unused features or realize adaptations that had lower

priority for a longer time. Since the details vary a lot in the
different projects, we want to focus on the actual modularity
or decoupling requirements of the different stakeholders:

Product manager

· React on new requirements faster

· Shorter release cycles, also for parts of the product

· Keep investments of the past

· Avoid changes in the UI to not confuse customers
Development manager

· Increase internal productivity by parallelization

· Use external teams

· Use new developers with different or less skills
Sales representative

· Sell parts of existing product separately

· More combination options, also external products

· Additional value as a compensation if changes to

current installations at customer’s site are required
Architect

· React on new requirements easier

· Local changes in manageable parts

· Clear assignment of responsibilities to modules

· Flexible usage of new technologies
Developers and tester

· Less coordination effort by working more local

· More guidance from the systems structure

· Keep proven technologies and complex algorithms
Customizer

· Separate customizations clearly from product code

· Reuse parts of the system

· Keep existing customizations
Support staff

· Reconstruct problem situations faster

· Locate problems easier

III. APPROACHING MODULARITY

In our past projects a combination of two approaches for
identifying potential components was applied [1]. A top-down
strategy identifies ideal modules and relationships based on
communication needs of the supported business processes,
considering both product and modularization requirements. In
a second step the existing implementation is taken as a starting
point, trying to identify current modules, their boundaries and
relationships. Both approaches are iteratively combined in
order to come up with a potential to-be architecture that can
be realized within the project constraints and is still able to
fulfill the decoupling and product requirements. It might be
necessary to negotiate some of the product requirements

This paper has been partially sponsored by the G����� �������	
�

E�����
� ��� ��������� ����� ����� ���������

d����� redesign if it turns out that the cost-benefit is not
appropriate. In parallel a migration plan is created, capable of
moving the system from the current state towards the intended
to-be architecture. In the final reconstruction step this
migration plan is conducted and the system transformed into
a more modular structure.

IV. DISCUSSION

Based on our experience with our industry partners we
collected several pitfalls often found in modularization
projects.

Goal overloading: Modularity gets considered as a silver
bullet for a number of problems that have been observed
around the system. Even if the modularization project is a
success, not all of the issues are likely to be solved, so
disappointment is inevitable. Distinguishing between product
and decoupling requirements is a step in the right direction to
reduce this risk.

Everything should be modular: Achieving full modularity
is impossible, so a general modularity goal for the overall
system is not sufficient [2]. Some modules have to be
connected to others, if there are dependencies in the supported
business processes. Thus it is the main challenge to anticipate
areas of potentially changing requirements and explicitly
make those parts of the system modular that are impacted by
these changes. It requires finding the right level of modularity
for every part of the system, keeping the balance between cost
for creation and maintenance of the modularity and the
savings gained by that modularity.

Modularity as an end in itself: Modularity itself does not
automatically guarantee the fulfillment of the implicitly
desired flexibility goals. These goals need to be elicited
thoroughly and the adequacy of the to-be architecture has to
be checked with respect to these change scenarios.

Simplification of functional dependencies: If business
processes supported by the system are not analyzed enough or
over-simplified dependencies that are inevitable tend to get
forgotten. This results in inadequate module definition and
compromising of the to-be architecture during reconstruction.

Disregarding as-is architecture: Another common pitfall
is to base decisions about the to-be architecture only on the
ideal architecture without analyzing the current as-is
architecture in detail. This ultimately leads to unexpected
issues during reconstruction when reality strikes back and the
intended module interfaces are not sufficient.

Getting lost in details: Trying to recover the complete as-
is architecture to a high level of detail consumes significant
effort and does not reduce the complexity. A more efficient
approach is to let experienced developers do a tool based
request driven analysis where identified dependencies are
rated and only important ones are refined.

Not using existing knowledge: Not involving developers
that created the system makes it hard to get the rationales of
past design decisions, which is especially valuable if these
decisions should be revised.

Perception over analysis: There are often assumptions
about the system that have been said so often so that they are
considered as reality. More often than not it turns out that they
are not exactly true. Basing decisions on these “ensured

assumptions” is critical, checking them by analyzing the code,
for example, reduces risk significantly.

Neglecting iterative nature of redesigning: Another pitfall
is not being prepared for performing several iterations in the
redesign process, thus wasting effort by creating detailed
documentations of intermediate to-be architectures.

New technology considered as savior: New technology
tends to look “shiny”, having many advantages over the
current one. Disadvantages of the current technology can be
easily observed, its advantages compared to the new one seem
to be small. The source for this conception is the missing
knowledge of the actual behavior of the new technology in the
actual environment. A comparison based on sound prototypes
often reveals that the differences are not as evident as
expected. A cost-benefit comparison that includes the
replacement effort is often debunking the new technology.

Changing fundamental architectural decisions: Trying to
change fundamental architectural decisions that have been
identified as being suboptimal during modularization is
tempting. In such cases the actual impact of such a change is
often underestimated. Starting with a more reachable
intermediate goal is a much more risk-aware approach.

Unmanaged reconstruction: The to-be architecture is only
valuable if it is also realized as it was intended. To achieve
that, a continuous monitoring of the reconstruction work in
terms of a fact-based tracking is required. Regular architecture
compliance assessments are an efficient way of achieving that.

Wrong expectation management: Admitting that some
expectations of the project are not realistic is hard.
Procrastinating to tell the truth results in disappointment and
significant loss of credibility.

Modularization as a disguise: In most systems there are
some technical modernization tasks that are considered as
important by architects or developers, but not by those who
decide about budget allocation. Hiding such tasks in a
modularization project is a risky approach since it will result
in a significant loss of credibility if this disguise gets public.

No clear project goal: As in any project it is necessary to
clearly define its goals upfront, so that an evaluation of its
success is possible. In case of modularization this best practice
gets often ignored, especially if no clear requirements have
been elicited at the beginning of the project.

Gold plating: A similar pitfall like on project level can also
happen on task level. Especially clean-up tasks that are
common in such reconstructing projects need a measurable
stop criteria. Otherwise developers tend to make good things
even better and not seeing other, more pressing tasks.

V. CONCLUSION

We gave an overview of typical modularization goals and
common pitfalls when aiming at them. A positive conclusion
is that for every one of them strategies are available to avoid
them, in most cases just by making them explicit.

REFERENCES

[1] Naab, M.; Weitzel B.; et. al: Isolation modularer Technologie-
komponenten aus smart FIX; IESE-Report; Kaiserslautern; 2013.

[2] Naab, M.: Enhancing architecture design methods for improved
flexibility in long-living information systems; PhD Theses; Fraunhofer-
Verlag; Kaiserslautern; 2011.

Project Support

Jan Jelschen, Johannes Meier and Andreas Winter – SENSEI Applied: An Auto-Generated
Toolchain for Q-MIG 23

Marvin Grieger and Masud Fazal-Baqaie – Towards a Framework for the Modular
Construction of Situation-Specific Software Transformation Methods

Hakan Aksu and Ralf Lämmel – API-related Developer Profiling

Sensei Applied: An Auto-Generated Toolchain for Q-MIG

Jan Jelschen, Johannes Meier, Andreas Winter
Carl von Ossietzky Universität, Oldenburg, Germany
{jelschen,meier,winter}@se.uni-oldenburg.de

1 Introduction

Large software evolution, migration, or reengineer-
ing endeavors require integrated tooling to support
their specific goals [1]. While some functionality is
project-specific, for many standard software evolution
tasks, tools are readily available. Those tools usually
provide little means for interoperability, making inte-
gration a tedious and error-prone struggle. Further-
more, software evolution projects must usually follow
iterative processes – even with fully elicited require-
ments, subjected legacy systems, being large, complex,
and undocumented, obscure the view to a clear path
through a project. Rigid, ad-hoc tool integration im-
pedes experimentation, encumbers adaption and exten-
sion, and overall slows down the project.

Sensei (Software EvolutioN SErvices Integra-
tion [2]) is a conceptual framework developed to ease
the toolchain-building process, by combining service-
oriented, component-based, and model-driven tech-
niques. Sensei provides the means and structures to
describe required functionality and their interplay as
services and orchestrations, respectively, and enables
automatic mapping to appropriate implementing com-
ponents and auto-generation of integration code.

The utility of Sensei has been put to the test by
using it to (re-)build the toolchain for the Q-MIG [3]
research project. This paper aims to demonstrate
Sensei’s advantages by explaining its application, and
comparing it to “manual” toolchain-building. To this
end, Section 2 gives a brief overview over the goals of
Q-MIG. Section 3 outlines the key principles of Sen-
sei, and how it is practically applied, using Q-MIG as
example. Section 4 exemplifies the utility of Sensei
regarding flexibility, reusability, and productivity us-
ing tooling-related issues that arose during the project.
The paper concludes with a summary in Section 5.

2 The Q-MIG Project

Q-MIG investigated quality dynamics of software
under language migrations from COBOL to Java.
Its objectives were to measure, compare and visu-
alize, as well as predict software migration quality.
Therefore, a Quality Control Center has been devel-
oped: a toolchain to complement an existing migration
toolchain in support of a) researchers studying migra-
tion quality, b) experts rating the inner quality of sys-
tems, and c) software migration consultants projecting
post-migration quality to improve migration tools, pro-
vide insights to clients, and choose migration strategies
and tooling according to quality goals. The required

tools and toolchains had been developed convention-
ally, first, as the Sensei tooling had not been ready
when the project commenced.

3 The SENSEI Approach Applied

The key aspects of Sensei can be summarized along
the utilized principles of service-oriented, component-
based, and model-driven paradigms, consolidated by
capabilities in an integrated meta-model. More detail
is given in the following, explaining the steps of apply-
ing Sensei (defining services, designing orchestrations,
adapting and registering components, and generating
toolchains), using Q-MIG as example.

Defining Services. First, the required functional-
ity has to be identified and described as services. In
Sensei, a service consists of a name and description of
its intended function, consumed inputs and produced
outputs with associated (abstract) data structures, and
capability classes (explained in the following).

Services can either be defined top-down or bottom-
up. The former approach identifies them from relevant
publications and diverse software evolution projects [5],
to create a catalog of generic, standardized services.
If available, services can be picked from the catalog
instead of being created for the project. Otherwise,
services can be created bottom-up, only for a project’s
required functionalities, giving full control over service
design, but potentially leading to project-specific ser-
vices with lower reuse value. This can be used, though,
to fill a catalog incrementally, and refine and generalize
its services in the process.

Lacking a comprehensive catalog, the bottom-up ap-
proach was chosen for Q-MIG. Services were identified
for parsing, calculating metrics, visualizing, learning
and predicting, as well as extracting and consolidating
data. All services were fitted with input and output
parameters, e.g. the parsing service’s input is source
code, and its output is a corresponding abstract syntax
tree. To be able to refine what kind of source code can
be parsed, the service also got a capability class named
programming language, with COBOL and Java among
the possible values. The parameter’s types can be re-
stricted according to a particular capability, e.g. Java
requires Java source code as input.

Designing Orchestrations. Once all service de-
scriptions are ready, they can be instantiated in an or-
chestration. A graphical editor [4] is available to sup-
port this task, so that service instances can be wired
up to define control and data flows. Service instances
can be nested in control structures to model concurrent
execution, or loops, for example.

{jelschen,meier,winter}@se.uni-oldenburg.de

The orchestration for Q-MIG’s quality measurement
starts with parsing. Next, a service to calculate a met-
ric is invoked once for each metric specified in the in-
put, using a loop, while concurrently, a service extracts
sub-system nesting information. Finally, the data is
consolidated and returned. The orchestration supports
COBOL and Java both, which is specified declaratively
using required capabilities; no branching was modeled.

Adapting and Registering Components. To
be usable with Sensei, components have to conform
to their services’ interfaces. The service-to-component
mapping is not one-to-one: for example, the parsing
service is implemented by two different components,
one for parsing Java, and one for COBOL. Data extrac-
tion and consolidation, as well as metric calculation are
implemented in a single component.

Generating Toolchains. Lastly, the toolchain
generator SCAffolder (targeting SCA: “Service Com-
ponent Architecture” as component framework) is fed
with the artifacts resulting from the previous steps. It
will try to find matches for each service instance in
the orchestration. It may select multiple components
to realize a single service with different capabilities,
and generate appropriate branching logic. SCAffolder
leverages service capabilities and associated data type
restrictions on them to invoke the right implementation
at runtime based on concrete input data.

4 Evaluation

This section compares the conventional toolchain-
building approach with Sensei, again using Q-MIG
as example. The comparison is structured according
to the criteria flexibility, reusability, and productivity.
Three exemplary issues that arose during Q-MIG have
been picked to illustrate relevance and particular ad-
vantages of Sensei: (1) To integrate a clone detec-
tor for the number of cloned lines metric within the
toolchain, technical interoperability issues became a
major selection criterion. A Java tool was selected, be-
cause it was the easiest to integrate. (2) Some project
members had less experience in object-oriented pro-
gramming, leading to architecture violations. (3) Due
to legal restrictions, parts of the toolchain had to be
run by, and on the premises of, the project’s industry
partner. The distributed part could not be automated,
introducing manual steps, communication overhead be-
tween the partners, and a rigorous release process.

Flexibility. Sensei enables a technology-indepen-
dent choice of existing tools (1), as it abstracts from
interoperability and implementation issues. The target
platform SCA offers support for different implementa-
tion languages. This helps less experienced develop-
ers (2) to create components with familiar techniques,
strictly isolated from other parts of the toolchain. The
high abstraction level also enables non-programmers
(e.g. data scientists, analysts) to partake in design-
ing toolchains. And it abstracts from deployment con-
cerns, easing toolchain distribution (3).

Reusability. Reuse is facilitated through Sensei
by building up a library of components, with interfaces
standardized through a service catalog. With Sensei,

adapters will rest with the tools, whereas in Q-MIG (1),
it was natural to keep them somewhat “buried” and
mixed in within the metric calculation code.

Productivity. Sensei decreases development ef-
fort partly through automation (code generation), and
by avoiding redundant developments through added
flexibility and easier reuse. E.g., while external
tools (1) still have to be adapted to Sensei’s infras-
tructure, it only has to be done once (possibly even
by the tool vendor). The application to Q-MIG has
shown that small changes can sometimes be imple-
mented more quickly without Sensei’s imposed struc-
ture, but their accumulation may lead to declining
evolvability of the toolchain.

The inability to create a gapless, fully integrated
toolchain in Q-MIG (3) highlights its importance, as
the manual procedures lead to misunderstandings, and
markedly slowed down turnarounds. While Sensei
does not currently support distributed toolchains, it
can be extended towards it, providing full toolchain
control without the need of human intervention. Here
though, it remains unclear whether full integration
would have been permissible from a legal point of view.

5 Summary

Sensei structures and partly automates toolchain
building to support (not only) software evolution
project processes. It facilitates flexibility and reuse,
and can thereby help save time and effort. Its applica-
tion to a concrete project is a first proof of viability.

Achieving the same advantages building toolchains
“conventionally”, e.g. by adhering to principles like
loose coupling and encapsulation, or by “only” us-
ing a particular component framework requires more
foresight, very disciplined development, and additional
implementation effort – something that is hard to
keep up under the pressures of a time- or budget-
constraint project and evolving conditions and require-
ments. Sensei enforces the required structures, and re-
duces the overall effort through automated integration
code generation. The overhead of defining services and
adapting component interfaces required at the outset
is set off by integration automation. In the long term,
it is expected to pay off due to increased reusability.

References

[1] S. E. Sim, “Next generation data interchange:
Tool-to-tool application program interfaces,” in
WCRE, 2000, pp. 278–280.

[2] J. Jelschen, “SENSEI: Software Evolution Service
Integration,” in Software Evolution Week (CSMR-
WCRE). Antwerp: IEEE, Feb. 2014, pp.
469—-472.

[3] G. Pandey, J. Jelschen, D. Kuryazov, and A. Win-
ter, “Quality Measurement Scenarios in Software
Migration,” in Softwaretechnik Trends, vol. 34,
no. 2. Bonn: GI, 2014, pp. 54–55.

[4] J. Meier, “Editoren für Service-Orchestrierungen,”
master’s thesis, University of Oldenburg, 2014.

[5] J. Jelschen, “Discovery and Description of Soft-
ware Evolution Services,” Softwaretechnik-Trends,
vol. 33, no. 2, pp. 59–60, May 2013.

Towards a Framework for the Modular Construction of
Situation-Specific Software Transformation Methods

Marvin Grieger, Masud Fazal-Baqaie
Universität Paderborn, s-lab – Software Quality Lab

Zukunftsmeile 1, 33102 Paderborn
{mgrieger, mfazal-baqaie}@s-lab.upb.de

Abstract
Software transformation methods are enacted during a
migration project to perform the technical transition of
a legacy system to a new environment. A critical task of
each project is to construct a situation-specific transfor-
mation method. In this paper, we categorize current Sit-
uational Method Engineering (SME) approaches that
support the construction of situation-specific transfor-
mation methods according to their degree of controlled
flexibility. Based on the findings, we introduce a method
engineering framework that enables the modular con-
struction of software transformation methods.

1 Introduction
If an existing software system does not realize all of its
requirements but is still valuable to ongoing business, it
has become legacy. This might be due to the fact that the
underlying technology restricts the fulfillment of new
requirements that arose over time. As new development
is risky and error-prone, a proven solution is to migrate
the existing system into a new environment, which is
performed in the context of a migration project. The
technical transition of a system is achieved by enacting
a transformation method which defines activities to per-
form, artifacts to create, tools to use, roles to involve and
techniques to apply. As those methods are used to per-
form some kind of reengineering [1], they are instances
of the well-established horseshoe-model [2].

Constructing a situation-specific transformation method
when migrating a software system is critical, as it influ-
ences the efficiency and effectiveness of the overall mi-
gration project. Efficiency in this context relates to prop-
erties of the process to perform the transformation, e.g.
the effort required, while effectiveness refers to proper-
ties of the migrated system, e.g. its software quality. Be-
sides being a critical task, the construction of a transfor-
mation method is also a complex one. Consider for ex-
ample that source and target environment differ in terms
of the programming language. Performing a migration
using a horseshoe-based process requires, among other
things, to determine the abstraction level to use. A trans-
formation on a syntactical level can be efficient, but in-
effective. On the one hand it only requires to develop
parsers, code generators and a mapping between the syn-
tactic elements of the languages involved, and enables
to transform large parts of the system automatically. On
the other hand however, as the amount of information on
a syntactical level is limited, it might not be possible to
adapt the system to the new environment, e.g. in case of

a migration from a monolithic to a layered architecture,
making the method ineffective [3]. Using a higher level
of abstraction can increase the effectiveness, e.g. by de-
termining for each part of the system to which architec-
tural layer it belongs. This will, however, reduce the ef-
ficiency of the method, as sophisticated program analy-
sis techniques are required. Beside the abstraction level
to use, a decision needs to be made on whether to auto-
mate the transformation at all. If an automatic transfor-
mation would be either inefficient or ineffective, a
guided manual transformation is a possible alternative.
In general, transformation methods are semi-automatic,
using multiple abstraction levels jointly. Thus, con-
structing for a given project an efficient and effective,
that is, situation-specific transformation method remains
a critical but complex task in every migration project.

2 Situation-Specific Engineering of Trans-
formation Methods
Situational Method Engineering (SME) approaches sup-
port the construction of situation-specific methods by
providing reusable methods that have been successfully
applied in practice, as well as guidance on how to adapt
them to a new situation encountered. In [4] a categori-
zation is introduced by which SME approaches are cat-
egorized based on the degree of controlled flexibility that
describes the extent to which a situation-specific adap-
tation is possible. The adaptation needs to be controlled
to ensure a high quality of the resulting method. Figure 1
illustrates this categorization applied on SME ap-
proaches that support the construction of software trans-
formation methods.

Figure 1: Categorization of method engineering approaches ac-

cording to their degree of controlled-flexibility, based on [4]

The reuse of fixed methods can be seen as an edge case,
SME approaches belonging to this category have the
lowest degree of flexibility. Fixed methods are those
who do not foresee any situation-specific adaptation as
they describe a static set of activities to perform, tools to
use, artifacts to generate, roles to include or techniques
to apply in order to transform a legacy system. Such a
method can either be described specifically, making it

Degree of controlled flexibility

Modular
construction

?

Fixed
method

Configuration
of a method

Selection of a
fixed method

or
Option

Tailoring of
a method

only applicable to few situations, or generically, requir-
ing situation-specific concretization. In any case the as-
sumed situational context is often only described implic-
itly. If the situational context for a set of fixed methods
is made explicit, it allows a selection of the most suitable
one, which can be seen as a more flexible SME approach
to perform situation-specific adaptation. But, since the
resulting method will be fixed, the adaptability of ap-
proaches belonging to this category is still limited. In
contrast, the definition of a base method that allows con-
figuration or tailoring provides a higher degree of flex-
ibility. While approaches of the former category aim at
configuring foreseen variation points, approaches of the
latter category can allow performing arbitrary, but well-
defined change operations to the base method. This is
achieved by providing a formal description and corre-
sponding tools. However, if many changes to the base
method are required, e.g. with novel content, or if no
guidance is given on how to assure the quality of the re-
sulting method, constructing a situation-specific method
becomes complex and error-prone.

These drawbacks are addressed by SME approaches that
enable the modular construction of transformation
methods by assembling predefined method parts. In ad-
dition to the method parts, approaches of this category
need to provide assembly guidelines and quality assur-
ance capabilities for constructed methods. Unfortu-
nately, approaches for the modular construction of trans-
formation methods are hardly available. As transfor-
mation methods are a specific kind of reengineering
methods, one could argue that software reengineering
frameworks can be used to construct transformation
methods in a modular manner. Although these frame-
works are useful to implement tools that are part of
transformation methods, they fall short in providing
guidance on how to systematically construct the method
itself and in assuring its quality.

3 Towards a Framework for the Modular
Construction of Transformation Methods
We address this problem by developing a method engi-
neering framework that enables the modular construc-
tion of transformation methods and thereby provides a
high degree of controlled flexibility. An overview of the
intended method engineering process is shown in fig-
ure 2.

Figure 2: Method engineering process for the modular construc-

tion of situation-specific transformation methods

In the beginning, the situational context of the migration
project needs to be identified, examples being character-

istics of the legacy system, the change of the environ-
ment, or goals of stakeholders. The knowledge about the
context is an essential prerequisite in order to construct
a situation-specific transformation method. Using this
knowledge, the transformation method is constructed
before related tools are implemented. The construction
is supported by a method base, which is a repository that
contains predefined transformation method parts and
transformation method patterns. While method parts are
building blocks of a method of any granularity, method
patterns describe methodological or quality aspects that
shall be incorporated into the method [5]. For this pur-
pose, a method pattern defines constraints over the
method parts, e.g., by defining which ones to use. Ad-
hering to these constraints during the construction al-
lows to ensure properties of the resulting method. In ad-
dition, the patterns provide a guideline for the construc-
tion of a transformation method, since they are required
to be selected, configured and integrated during the con-
struction process. As a last step, the quality of the result-
ing method is validated. After the transformation
method is constructed, related tools are implemented,
i.e., the corresponding tool chain is initialized where
necessary. As a last step, the transformation method is
enacted to perform the transformation.

4 Conclusion and Future Work
In this paper, we characterized Situational Method En-
gineering (SME) approaches that support the construc-
tion of situation-specific transformation methods ac-
cording to their degree of controlled flexibility. We con-
cluded that current approaches have some shortcomings
which we address by introducing a method engineering
framework that enables the modular construction of
transformation methods. We aim to develop and apply
the framework in the MoSAiC project, which is sup-
ported by the Deutsche Forschungsgemeinschaft (DFG)
under grants EB 119/11-1 and EN 184/6-1.

5 Literature
[1] E. J. Chikofsky and J. H. I. Cross, “Reverse engi-

neering and design  recovery: a taxonomy,” IEEE
Software, vol. 7, no. 1, pp. 13–17, 1990  

[2] R. Kazman, S. G. Woods, and S. J. Carrière, “Re-
quirements for Integrating Software Architecture
and Reengineering Models: CORUM II,” in Proc.
of WCRE 1998, pp. 154–  163.  

[3] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J.
Jézéquel, “Model-Driven Engineering for Software
Migration in a Large Industrial Context,” in Proc.
of MODELS 2007, pp. 482–497.  

[4] Frank Harmsen, Sjaak Brinkkemper, and Han Oei.
“Situational method engineering for information
system project approaches.” In Proc. of CRIS 1994,
pp. 169–194.

[5] Masud Fazal-Baqaie, Markus Luckey, and Gregor
Engels. “Assembly-Based Method Engineering
with Method Patterns.” In Proc. of SE 2013, pp.
435–444.

Transformation
Method

Implementation

Situational
Context

Identification

Transformation
Method

Enactment

Transformation
Method

Construction

Situational
Context
Model

Situation-Specific
Transformation

Method Specification

Situation-Specific
Tool Chain

Method
Fragments

Method
Patterns

Method Base

API-related Developer Profiling
(Extended Abstract)∗

Hakan Aksu and Ralf Lämmel
Software Languages Team, University of Koblenz-Landau, Germany

Abstract
We analyze the version history of software projects to
determine API-related profiles of software developers.
To this end, we identify API references in source-code
changes and aggregate such references through suit-
able metrics that provide different views on the API
usage per developer so that certain conclusions regard-
ing developer experience or comparisons between de-
velopers become feasible. We apply this approach in
a case study for the open-source project JHotDraw.

1 Motivation
Knowledge of developer profiles (or experience or
skills) is clearly valuable, e.g., for hiring or program
managers. For instance, a hiring manager who is
filling a position in a specific project may want to
match the developer skills with the skills required for
the project. A program manager who is reassigning
sparse resources across several projects may want to
validate that developers are reassigned in a way that
all projects are still sufficiently staffed in terms of re-
quired skills.

Developer skills may be determined, in principle,
by means of interviews, questionnaires, assignments,
or analysis of available social (coding) network infor-
mation (such as GitHub, topcoder, or StackOverflow).
We describe an approach that analyzes API usage in
source-code changes over the timeline of a project so
that API-related developer profiles can be aggregated
on the grounds of suitable metrics. The individual
APIs in a project may also be mapped to more ab-
stract domains [4] (such as GUI or XML or database
programming), thereby permitting a discussion of de-
veloper profiles at a higher level of abstraction.

2 API-usage analysis
Without loss of generality, our approach has been im-
plemented for Java as the source-code language and
subversion as the version control system. We use the
metamodel of Fig. 1 for data extraction. For what it
matters, it is implemented as a relational database (re-
lying on Java DB). The metamodel shows how APIs
consists of API packages, how these packages declare

∗A comprehensive description of this research is being pre-
pared [1, 2] and made available online: http://softlang.
uni-koblenz.de/apidevprof/

certain API elements (e.g., classes and methods), how
APIs are associated with domains, how repositories
consist of files, which files have changed, which specific
lines have changed, and how these changes are associ-
ated with APIs and elements thereof on the grounds
of analyzing the changed lines.

The analysis relies on several extractors. The SVN-
RepositoryExtractor iterates over all commits and ex-
tracts Version information like developer name, revi-
sion number, and commit message, the ChangedFile
information, and the ChangedLine information. As
a result, every changed line can be associated with a
specific developer. Data cleaning is applied so that,
for example, bulk moves are excluded, as such changes
would otherwise lead to severely imprecise results.

The ClassExtractor extracts API packages and el-
ements from a given .jar file for an API. In our im-
plementation, as a concession to scalability, we only
maintain information about the latest version of an
API, which may affect precision and recall.

The APIUsageExtractor extracts API package im-
ports from changed files and ‘potentially’ referenced
API elements from changed lines. A lexical approach
is used in that changed lines are tokenized and the
extracted names are intersected with API elements
from imported API packages, as known due the Clas-
sExtractor. In this manner, the underlying software
projects do not need to be built, which is often diffi-
cult for larger projects and specifically older versions
thereof. However, the lexical approach also challenges
the precision of the analysis; this is not a severe prob-
lem in the case study that we performed.

3 Profiling metrics
For brevity, we only mention a few per-developer met-
rics, also without motivating them deeply:

• Given an API, the number of distinct API ele-
ments that are referenced by changed lines, over
all commits by the developer.

• Given an API, the largest number of methods
changed in a single commit by the developer and
referencing elements of the API.

• The number of APIs of which elements were ref-
erenced in changed lines, over all commits by the
developer.

http://softlang.uni-koblenz.de/apidevprof/
http://softlang.uni-koblenz.de/apidevprof/

Figure 1: Metamodel for the underlying API-usage analysis.

The idea is that developers are to be compared in
terms of these metrics. Clearly, these metrics need
to be configured with thresholds and normalized in
certain ways to permit useful comparisons.

4 Related Work
Software analysis related to APIs has received much
attention by research in the last few years. For ex-
ample, our team and collaborators have analyzed API
usage to understand what API facets are used to what
extent in what parts of a project and also the combi-
nation of APIs involved [4]. Analyzing API usage may
also be useful to complement API documentation [6].
Evolution-aware analyses are also common. For in-
stance, the evolution of an API may be analyzed to
guide the implied migration work on projects that use
an API [5].

Our current work is particularly concerned with
linking API usage to developers and aggregating pro-
filing information regarding experience or skills. Thus,
our work is closely related to any effort on mining soft-
ware repositories that takes properly into account de-
velopers. For instance, there is research on analyzing
interactions between distributed open-source software
developers and leveraging data mining techniques so
that developer roles can be derived [7]. Another ap-
proach [3] applies statistical topic modeling to source
code, thereby providing a basis for determining devel-
oper competencies, developer similarity, and others.

5 Case study
We analyzed the subversion repository of JHotdraw
with its version history of 15 years (2000-2015) and
800 versions. There are more than 17K changed files

and more then 650K changed lines. We identified 47
APIs and grouped them in 18 programming domains.
We associated changes with 11 developers. We deter-
mined the profiling metrics such as those mentioned
above. These metrics provide API-related quantita-
tive insight into developer activities, ultimately pro-
filing (‘sorting’) the developers in terms of their API-
related skills; see [1, 2] for details.

References
[1] H. Aksu. Evolution-aware API analysis of devel-

oper skills, Mar. 2015. Master’s thesis. University of
Koblenz-Landau. Computer Science Department.

[2] H. Aksu and R. Lämmel. API-related Developer Pro-
filing. Draft. Unpublished. To be submitted., 2015.

[3] E. Linstead, P. Rigor, S. K. Bajracharya, C. V. Lopes,
and P. Baldi. Mining Eclipse Developer Contribu-
tions via Author-Topic Models. In Proc. of MSR 2007,
page 30. IEEE, 2007.

[4] C. D. Roover, R. Lämmel, and E. Pek. Multi-
dimensional exploration of API usage. In Proc. of
ICPC 2013, pages 152–161. IEEE, 2013.

[5] W. Wu, B. Adams, Y. Guéhéneuc, and G. Antoniol.
ACUA: API Change and Usage Auditor. In Proc. of
SCAM 2014, pages 89–94. IEEE, 2014.

[6] T. Xie and J. Pei. MAPO: mining API usages from
open source repositories. In Proc. of MSR 2006, pages
54–57. IEEE, 2006.

[7] L. Yu and S. Ramaswamy. Mining CVS Repositories
to Understand Open-Source Project Developer Roles.
In Proc. of MSR 2007, page 8. IEEE, 2007.

	WSR2015_Proceeedings_V09
	WSRE_2015_vorwort_V11
	17. Workshop Software-Reengineering und -Evolution
	Bad Honnef 4.-6. Mai 2015

	WSRE_2015_Programm_V11
	Zwischenblatt_01_Text Mining
	WSRE_2015_submission_20_neu
	WSRE_2015_submission_11

	Zwischenblatt_02_Analysis
	WSRE_2015_submission_1
	WSRE_2015_submission_7
	Introduction
	State Analysis
	Tool Composition
	Choice of State Variables
	Examples Unveiled

	Conclusion and Future Work

	WSRE_2015_submission_13
	Zwischenblatt_03_ModelBasedDevelopment
	WSRE_2015_submission_4
	WSRE_2015_submission_22
	Motivation
	Modeling Delta Representation
	Model History Analysis
	Conclusion

	WSRE_2015_submission_12
	Introduction
	Requirements
	Implementation Proposal
	Discussion
	Conclusion
	Future Directions

	Zwischenblatt_04_Migration
	WSRE_2015_submission_15
	Motivation
	Requirements
	Quality Control Center
	Application
	Conclusion

	WSRE_2015_submission_3
	Introduction
	The Mobile Porting Process
	Related Work
	Evaluation and future work
	Literaturverzeichnis

	WSRE_2015_submission_8
	WSRE_2015_submission_23_WT
	Zwischenblatt_05_Quality
	WSRE_2015_submission_5
	WSRE_2015_submission_19
	WSRE_2015_submission_6
	Introduction
	SQA-Mashup
	SQA-Profiles
	Bridge the Gap
	Conclusion

	Zwischenblatt_06_ToolDemos
	Zwischenblatt_07_Architecture
	WSRE_2015_submission_16
	WSRE_2015_submission_17
	WSRE_2015_submission_18
	Zwischenblatt_08_ProjectSupport
	WSRE_2015_submission_14
	Introduction
	The Q-MIG Project
	The Sensei Approach Applied
	Evaluation
	Summary

	WSRE_2015_submission_9
	WSRE_2015_submission_10
	Motivation
	API-usage analysis
	Profiling metrics
	Related Work
	Case study

	WSRE_2015_submission_15.pdf
	Motivation
	Requirements
	Quality Control Center
	Application
	Conclusion

